An Evaluation of Touch Input at the Edge of a Table

Nikhita Joshi and Daniel Vogel
School of Computer Science, University of Waterloo
\{nvjoshi,dvogel\}@uwaterloo.ca

Abstract

Tables, desks, and counters are often nearby, motivating their use as interactive surfaces. However, they are typically cluttered. As an alternative, we explore touch input along the 'edge' of table-like surfaces. The performance of tapping, crossing, and dragging is tested along the two ridges and front face of a table edge. Results show top ridge movement time is comparable to the top face when tapping or dragging. When crossing, both ridges are at least 11% faster than the top face. Effective width analysis is used to model performance and provide recommended target sizes. Based on observed user behaviour, variations of top and bottom ridge crossing are explored in a second study, and design recommendations with example applications are provided.

KEYWORDS

interaction techniques; controlled experiments; Fitts' law

ACM Reference Format:

Nikhita Joshi and Daniel Vogel. 2019. An Evaluation of Touch Input at the Edge of a Table. In CHI Conference on Human Factors in Computing Systems Proceedings (CHI 2019), May 4-9, 2019, Glasgow, Scotland UK. ACM, New York, NY, USA, 12 pages. https://doi.org/ 10.1145/3290605.3300476

1 INTRODUCTION

With Spatial Augmented Reality (SAR) [32] any surface in an environment can act as an interactive display, and a large, flat, horizontal surface like a table, counter, or desk is often nearby. This availability motivates their use as an interactive touch surface $[6,15,27,40,49]$ and led to several touch performance evaluations [18, 31, 35]. However tables, counters, and desks are often cluttered [10], so using a large portion of the top for interaction may not be practical.

There are other unobstructed table surfaces that could support interaction. The bottom face is an obvious option [43], but a table edge has a vertical face and two ridges which may support common interaction techniques. Researchers
CHI 2019, May 4-9, 2019, Glasgow, Scotland UK
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in CHI Conference on Human Factors in Computing Systems Proceedings (CHI 2019), May 4-9, 2019, Glasgow, Scotland UK, https://doi.org/10.1145/3290605. 3300476.
have examined interaction on other types of surfaces, such as convex hemispheres [33] and raised ridges [20, 24, 46-48], but the specific surfaces located around the edge of a table have not been investigated. As the region nearest the user on a touch tabletop is faster and easier to use [8], edge surfaces may have similar advantages.

We compare the speed and accuracy of touch input when tapping, crossing, and dragging on three surfaces that form a table edge: a vertical front face, a top ridge, and a bottom ridge (Figure 1). We use a 1D Fitts' law [17] task and compare performance to using the top and bottom faces. An initial experiment explored using the index finger since it is most natural and common, and a second experiment extended our inquiry to using the thumb with a "braced" posture [13].

We contribute empirical results that validate the potential for touch input along the edge of a table. Top ridge interaction is often preferred, and its movement time is comparable to the top face when tapping or dragging with an index finger. When crossing, both ridges are at least 11% faster than the top face, and errors are below 6% for all surfaces. Effective width analysis shows minimum target widths are 7.4 to 19.2 mm . The thumb has poorer performance than the index finger. Our work sets a foundation for designers and researchers to adopt and explore new edge-of-table interactions.

2 BACKGROUND AND RELATED WORK

The majority of previous work focuses on a single, large horizontal surface [18, 34]. Here, we describe those relevant to our study choices or factors that might influence touch on

Figure 1: Edge of table interaction: (a) edge surfaces; (b) index finger on top ridge; (c) alternative braced thumb posture; (d) using edge touches to control remote SAR content.
a table edge. Luo and Vogel [29] show there is no significant difference in speed and error rate between crossing through horizontal and vertical targets. We primarily use horizontal crossing targets in our experiments with some evaluation for horizontal versus vertical on compatible table edge surfaces. Cockburn et al. [11] show friction between fingers and the touchscreen makes dragging slower than tapping. With a table edge, dragging along thin ridge surfaces may create less friction. Guerreiro et al. [24] show tapping is preferred to crossing and directional gesturing, but the natural 1D affordance of a ridge may be more suitable for crossing.

A formative study for Bi et al.'s Magic Desk [8] compared touch performance over different regions of a tabletop. Onehanded tasks performed in the region nearest the user were generally faster, however, they also report that this region can be occluded by the user's hands. The table edge is composed of surfaces closest to the user, so a balance between speed and hand occlusion may be a challenge. In addition, Bi et al. [8] studied two-handed tasks, and found both near and far regions were faster and easier overall. We focus on onehanded input in our experiments, but we include two-handed input in our larger table edge interaction design space.

In addition, work has compared horizontal and vertical surfaces. Pedersen and Hornbæk's work [31] shows tapping is 5% faster on vertical surfaces, and dragging is 5% faster and less error-prone on horizontal surfaces. Bachynskyi et al. [4] find that interactions using a tabletop yield 14% more throughput than a vertical display. Forlines et al. [18] note that one-finger contact is similar at any location of a vertical touchscreen and other fingers are often 'tucked' away. When interacting with targets further away on horizontal surfaces, other fingers can come in closer contact with the touchscreen and cause accidental touch input. Locations closer to the user may be better for touch input on horizontal surfaces.

The bottom of a table has been examined by Wigdor et al. [43]. Using bimanual interaction, they found larger targets may be selected from underneath the table without visual feedback. Related work examining mobile back-of-device interaction suggests visual feedback is preferred, if not necessary, to interact with hidden surfaces [5, 42, 46].
Interactions on Non-Planar Surfaces. Previous work on nonplanar touch input focused on curved devices, such as Sphere [7] and a Mouse case [38]. Roudaut et al. [33] explore touch on smooth surface curvatures, and found convex surfaces increase pointing accuracy. A table edge's ridges can be considered convex, although not smooth. Curve [45] and BendDesk [39] combine horizontal and vertical touch surfaces using a curved concave edge, but dragging along this curve is slower [39]. A table edge's ridges could also be used to drag content across two differently-oriented surfaces.

Others have used raised physical ridges to increase task precision [20, 24, 46-48]. EdgeWrite [48] is a text entry technique that allows users to write letters along the ridges of a small square hole. When comparing touch to joystick input, Wobbrock et al. [47] show using EdgeWrite with touch input is preferred among participants and leads to faster interaction times. EdgeWrite is faster using the index finger on the front of a touchscreen for one- and two-handed interactions.

Although touch input along a table edge has not been examined, previous work suggests it may be a strong candidate for meaningful interactions due to its physical properties.

3 TOUCH INPUT AT THE EDGE OF A TABLE

Table-like objects are almost always around us. We work at desks, eat at tables, gather around bars, prepare food on counters, reach for objects on shelves, and use tools at workbenches. The near-future vision for surface-mapped SAR [32] combined with high quality touch input throughout the environment using depth cameras [44, 49] or flexible capacitive sensors [23] means ubiquitous surfaces can also be used as interactive digital displays. Systems like Digital Desk [40], ambientROOM [25], LightWidgets [16], Bonfire [27], and WorldKit [49] demonstrate different applications for touchenabled SAR, like a pervasive calculator, ambient displays, a volume control, viewing notifications, and dimming lights.

Table-like surfaces are often cluttered. Malone's [30] interviews with office workers found tables piled with documents. In Cheng et al.'s [10] survey to understand the objects people have on their desk, participants never worked at an empty table. Tabard et al. [37] report physical object occlusion as a primary issue for their eLabBench tabletop system. Others have acknowledged clutter indirectly, by proposing display techniques to accommodate a cluttered surface [14, 19, 28].

We examine interactions around a table edge as table-like objects are ubiquitous, they can be augmented using SAR and touch sensors, and they cannot be cluttered.

Figure 2: System used for testing edge-of-table interactions

Potential Design Space and Applications

The edge of a table-like object has many interesting physical properties such as faces, ridges, and corners of varying shapes, sizes, and textures that could support touch input. Corners could replicate menu selection buttons; sliding along a straight table ridge using one or two fingers could control volume, 'flicking' the bottom ridge with one finger could trigger discrete events, like dismissing notifications; grabbing the table edge with the whole hand could pause a video player; and 'pinching' the index and thumb along a table's front and top faces, like a cross surface pinch-to-zoom, could create an input dimension that spans multiple surfaces.

Compared to the tabletop, table edge surfaces may be more easily grasped eyes-free. Shorter users, like young children, could interact with the front face due to its reachable height and access more useful IOT functions like dimming the lights in a kitchen. For users with motor impairments, touch input along a ridge may help stabilize their movements [46, 47].

Given this large, mostly unexplored design space, we focus on touch interactions along the edge of a rectangular table, which consists of a front face and two ridges. Ridges are one-dimensional, but we believe they could still support meaningful interaction as sliders or crossing targets. As we are not proposing using the table's edge as a general purpose 2 D touch pad, this physical property is not an issue.

There are several touch operations such as 2D rotation, scaling, and translation. Many input strategies exist: multitouch [3, 41], bimanual [43] input, and input with different fingers [22] or finger orientations [21]. We focus on three common operations: tap, cross, and drag with the index finger and explore a "braced" [13] thumb in a second study.

As ridges are raised surfaces, the tactile feedback when tapping may seem 'button-like,' and improve performance. Ridges are also 1D in nature, which may pair well with crossing, where the ridge becomes the crossing target. It is unclear if dragging is suitable for edge-of-table interactions.

Prototyping System

We simulate future display and touch sensing at the edge of a table using SAR projection and motion tracking (Figure 2).

SAR Projection Display. The system is built around a $61 \mathrm{~cm} \times$ 122 cm rectangular table (height 72 cm and 3 cm thick top). A single 1280×720 resolution projector mounted to the right of the table is angled to project onto the top face, top ridge, front face, and bottom ridge. One limitation of this approach is that the hand may occlude part of the projected content. In practice, we found the size of a finger minimized occlusion of the immediate area, and people visually acquire targets before motor movement ends. The RoomAlive toolkit [26] is used to calibrate projector transformations to enable projection mapping to the table surfaces. Some manual tuning
was required to precisely align the 3D model of the table to the real table. A server (Windows 10, Core i7-6850K) runs a custom Unity3D 5.6.1 application, which processes tracked finger positions and renders projection-mapped content to the projector at 60 FPS using a GeForce GTX 1080 8G GPU.

Motion Tracked Touch. A 10-camera Vicon system tracks a finger using a single 9.5 mm marker. Ten cameras track a $140 \mathrm{~cm} \times 170 \mathrm{~cm}$ area around the front edge of the table.

To account for finger thickness and contact angle, a peruser calibration is used. For each surface, the user places their finger at the centre of two small pink targets spaced 52 cm apart. At each position, the 3D offset vector from the finger marker to the target centre is recorded. During system operation, a linear interpolation between the two 3D vectors captured for the closest surface is used to find the position of the finger relative to the tracked marker.
Tracking quality is quite good, but due to the user's hand and the table's large solid surface, the marker can be momentarily occluded causing its position to "flicker." To compensate for this, touch down events are detected when the calibrated finger position is less than 3 mm away from a surface, and touch up events when it is at least 10 mm away.

4 EXPERIMENT 1 - USING INDEX FINGER

The goal of this experiment is to measure the speed and accuracy of one-dimensional, single-touch tapping, dragging, and crossing using the two ridges and face of a table edge, with top and bottom faces included as baseline comparisons. The results are used to calculate throughput and establish minimum target widths using effective width analysis.

Participants and Apparatus

We recruited 15 participants, ages 23 to 39 ($\mu=27, \sigma=4.13$), 5 were female, 10 were male, and 1 was left-handed. All previously used touchscreen devices. Remuneration was $\$ 15$.

Participants sat in a standard office chair facing the table system (described above), with their body centered on the interactive area. The tracking marker was attached to the index finger using hypoallergenic tape. The touch offset calibration method was performed for each participant on all tested surfaces. To reduce friction caused by humidity, participants applied talcum powder to their finger as needed.

Tasks

Three tasks represent standard interactions (Figure 3):
Tapping - The participant touched and released their finger within the bounds of a target.

Crossing - The participant touched above or below a horizontal line, moved their finger through the line, and released once they had passed through. Discrete crossing was used [$1,2,29$] as it is most similar to tap and drag. We test crossing
through vertical targets on all compatible surfaces (top, front, and bottom faces), which we discuss in a separate analysis.

Dragging - The participant acquired a pink line at the centre of a target by touching down within the target's bounds. The line was dragged by maintaining contact with the table until a docking target was reached and the finger lifted. The line snapped to the centre of the docking target.

The current target was green, while the other was blue. A 'click' or 'beep' sound signaled if the task was successful, or not. Once the finger was lifted after a trial, the target colours changed, and the next trial continued. As recommended [$5,42,46]$, a small red cursor, projected on the top face, tracks the finger on the bottom face. Its diameter is 3 mm when the finger contacts the table, but becomes larger and more transparent as the finger is lifted.

For each task, the target width and distance was experimentally controlled. The participant completed a set of 5 reciprocal task trials (back-and-forth between two targets), using the same width and distance. We use one-dimensional tasks since the top ridge, front face, and bottom ridge are not large enough to support two-dimensional tasks.
'False' errors could occur if marker tracking is momentarily lost. To mitigate this, we define a 2 cm region on both sides of the target, and consider any errors detected outside this range to be caused by a motion tracking error. An error sound is played, and the participant must restart the trial. Errors inside the 2 cm region around the target are counted as 'true' errors and are used for the error rate metric. Note 2 cm is the width of the largest target we test.

Procedure

Each participant used all surfaces for each task. Before each combination of a specific task and surface, they completed a practice block containing a set of the easiest and most difficult combinations of target distance and width.

After, they completed five sets of trials, each set a single combination of target distance and width. This was done thrice to create three blocks of sets for a surface, and the process repeated for all surfaces. After each set, the participant pressed a large 'continue' button rendered 15 cm from the back of the top face. This provided a place to take a break.

The task changed once all surfaces were used for the current task. At this time, the participant ranked the five surfaces for ease of use, ease of learning, comfort, and overall preference. The study lasted approximately 1 hour.

Design

This is a within-subjects design with two primary independent variables: task with 3 levels (TAP, cross, drag); and surface with 5 levels (T-FACE, T-RIDGE, F-FACE, b-RIDGE, bFACE). BLOCK and id are secondary independent variables,

Figure 3: Targets for the top face, top ridge, and front face.
where id is the index of difficulty described in Fitts' law [36]. There were 5 ID variations for each task, and every ID was calculated using a target width (W) and distance (D) (W = $20 \mathrm{~mm}, 18 \mathrm{~mm}, 15 \mathrm{~mm}, 13 \mathrm{~mm}, 10 \mathrm{~mm} ; \mathrm{D}=100 \mathrm{~mm}, 175$ $\mathrm{mm}, 250 \mathrm{~mm}, 325 \mathrm{~mm}, 400 \mathrm{~mm}$; ID $=2.58,3.46,4.14,4.75$, 5.36). Each ID variation was presented in random order. We selected these W and D values as id should be between 2 and 8 [36], W should be large enough to see and touch, and D should not exceed the length of the table.
The order for TASK was counter-balanced using a 3×3 Latin square. For crossing, the vertical and horizontal orientations occurred one after another using a random ordering.

The primary measures are Selection Time and Error Rate. Selection Time is the time from the previous target selection until the current target selection. Error Rate is the proportion of trials that had one or more task errors. There are also 12 subjective rankings. Excluding the extra horizontal crossing condition, there are: 3 TASKS $\times 5$ SURFACES $\times 3$ BLOCKS $\times 5$ ids $\times 5$ repetitions $=1125$ data points per participant.

Results

For every combination of task, surface, and block, trial times more than 3 standard deviations from the mean were excluded as outliers. An additional 8 trials were excluded due to tracking errors. Overall, 218 trials (1.3%) were removed.

An implementation bug caused some crossing trials to be falsely categorized as errors. During the experiment, target intersections were tested using a series of points. This is correct for detecting a point inside a tapping or dragging target, but fast movements sometimes passed through thin crossing targets without detection. To correct this, trials are retroactively marked successful if any line segments in the series of contact points intersect a crossing target. This corrected 1,903 false error trials (26% of crossing trials). Participants heard a warning sound when a valid cross was falsely detected as an error, which may have influenced task preference rankings. Because we are primarily focused on comparing surfaces, this is an acceptable limitation.

Analysis Methods. In the analysis, a surface \times task \times block ANOVA with Tukey HSD post hoc tests was used, unless noted. When sphericity was violated, degrees of freedom were corrected using Greenhouse-Geisser ($\epsilon<0.75$) or Huynh-Feldt ($\epsilon \geq 0.75$). As residuals for Selection Time were not normally distributed, log transformed values were used. For readability, we use short surface names in figures and tables: $\mathrm{TF}=\mathrm{T}-\mathrm{FACE}, \mathrm{TR}=\mathrm{T}-\mathrm{RIDGE}, \mathrm{FF}=\mathrm{F}-\mathrm{FACE}, \mathrm{BR}=\mathrm{B}$-RIDGE, and $\mathrm{BF}=\mathrm{B}$-FACE. Error bars in all graphs are 95% confidence.

Learning Effect. We are interested in practised performance, so we examine if earlier blocks took longer and should be removed (as recommended for Fitts' studies [36]). There is a small, but significant effect of вlock on Selection Time ($F_{2,28}=42.28, p<.001, \eta_{G}^{2}=.02$), but no interactions involving вlock. Post hoc tests found block 3 faster than block 1 ($p<.001$) and вцоск $2(p<.01$). The time difference between вLоск 2 and 3 is small, only $30 \mathrm{~ms}(2.5 \%)$.

We noticed participants switching to optimal postures or movement strategies as the experiment progressed. Given this, and the significant difference, we use block 3 data in all subsequent analysis to be more representative of practised performance. Analysis using more blocks yields similar results, and any differences are noted in our discussion.

Selection Time. Considering all tasks together, using the top ridge is fastest. A significant main effect of Surface on Se lection Time ($F_{4,56}=34.56, p<.001, \eta_{G}^{2}=.27$) with post hoc tests reveals differences between all surfaces (all $p<.05$): тRIDGE $(990 \mathrm{~ms}$) is fastest, followed by T-FACE (1039 ms), F-FACE (1137 ms), B-RIDGE (1172 ms), and B-FACE (1311 ms).

When considering specific tasks, the top ridge is always one of the fastest surfaces. There is a significant interaction effect involving task and surface on Selection Time ($F_{8,112}=$ 8.32, $p<.001, \eta_{G}^{2}=.12$). Post hoc tests examine differences between each SURFACE, for every task (Figure 4):

- For tap, there is no significant difference between t-face and T-RIDGE. Other differences are significant (all $p<.001$). T-FACE (692 ms) and T-RIDGE (710 ms) are faster than F-FACE (768 ms), b-RIDGE (958 ms), and b-FACE (1075 ms).
- For cross, there is no significant difference between \mathbf{T} FACE and F-FACE, but other differences are significant (all $p<.01$). T-RIDGE (821 ms) is fastest (19% faster than T-FACE), followed by b-Ridge (902 ms) (11% faster than T-FACE), FFACE (981 ms) and t-FACE (1013 ms), and b-fACE (1150 ms).
- For drag, there is no significant difference between b-face, f-FACE, and b-RIDGE, or T-FACE and T-RIDGE, but all other differences are significant (all $p<.001$). T-FACE $(1409 \mathrm{~ms})$ and T-Ridge (1434 ms) are fastest and b-Ridge (1658 ms), F-FACE (1685 ms) and B-FACE (1708 ms) are slowest.
In addition, post hoc tests between task, for every surFACE find tapping is always the fastest task, except for the

Figure 4: Selection Time (ms) by task for each surface

Figure 5: Error Rate (\%) by task for each surface
bottom ridge, where crossing is fastest. For all surfaces, there is a significant difference between all tasks (all $p<.001$), except between tap and cross for b-Ridge which is borderline ($p=.04$). TAP is the fastest across surfaces, except for B-RIDGE, where cross (902 ms) is faster than TAP (958 ms).

Error Rate. Considering all tasks, top face and top ridge are less error prone than the bottom face. A significant main effect of SURFACE on Error Rate ($F_{4,56}=5.16, p<.01, \eta_{G}^{2}=.07$) with post hoc tests reveals significant differences between t-RIDGE and b-FACE, and T-FACE and b-FACE (both $p<.05$). Overall, t-face and t-Ridge, f-FACE and b-RIDGe, and b-face have average error rates of $4 \%, 6 \%$, and 8%, respectively.

Surface does not affect error rates when crossing or dragging (Figure 5). There is a significant interaction between task and Surface ($F_{8,112}=4.21, p<.001, \eta_{G}^{2}=.12$) on Error Rate. Post hoc tests reveal differences between each task, across every surface. For tap, there are differences between t-Ridge (3%) and b-Ridge (11%) ($p<0.05$); t-Ridge and bfACE (15%) ($p<.001$); and T-fACE (7%) and b-face ($p<.05$). For cross and DRAG, there are no significant differences.
Error rate is consistent across tasks the for top ridge and front face. Post hoc tests reveal differences in Error Rate between tap and cross for T-FACE, B-RIDGE (both $p<0.05$), and b-face ($p<.001$). There is a difference between tap and DRAG for T-FACE ($p<.05$), B-RIDGE and B-FACE (both $p<.001$).

Preference Scores. After completing a single TASk, participants ranked surfaces from best to worst for ease of use, ease of learning, comfort, and overall preference. Ties are allowed. We assign a Condorcet rank [50] to each condition. A condition ranked first is the condition that defeats all others in pairwise comparisons (Condorcet winner), while the condition ranked second defeats all others save the rank one

Table 1: Condorcet preference rankings

	EoU											
	T	C	D									
TF	1	2	1	1	3	1	1	2	1	1	4	2
TR	2	1	2	2	1	1	2	1	2	2	1	1
FF	3	3	3	3	2	2	4	4	4	4	3	4
BR	4	2	4	4	1	4	4	2	5	5	2	5
BF	5	4	3	5	4	3	3	3	3	3	5	3

condition, and so on. A Condorcet winner or strict ordering may not exist. If an ordering exists, each condition strictly dominates the others in preference. As strict ordering is not important, we allow for equal Condorcet rankings.

Table 1 presents all Condorcet rankings, where T, C, and D represent tap, cross, and drag; and EoU and EoL represent ease of use and ease of learning, respectively. The top face and top ridge are consistently highly ranked across all measures whereas the other surfaces are ranked lower. The bottom ridge is only highly ranked (1 or 2) for crossing.

Crossing Orientation

The main study focused on the horizontal target orientation (vertical crossing), but we also gathered data for vertical crossing targets (horizontal crossing) with the compatible top, front, and bottom faces. For this analysis we define a 3-level factor surface* for the three surfaces, and a 2level factor crosstype $*$, defined by crossing type rather than target orientation: VERT and HORZ.

Overall, vertical crossing is significantly faster than horizontal crossing. A significant main effect of crosstype* on Selection Time with post hoc tests reveals VErt (1048ms) is significantly faster than HORZ (1151ms), which differs from Luo and Vogel's previous results [29]. This may be due to differences in surface orientation or texture.

Overall, front face is fastest. A main effect of surface* on Selection Time ($F_{2,28}=6.68, p<.01, \eta_{G}^{2}=.07$) and post hoc tests show differences between all surfaces (all $p<.05$). F-FACE (1037 ms) is faster than T-FACE (1087 ms) and b-FACE (1173 ms). There are no interaction effects.

Homing Time

Our experiment was not designed to measure the time spent moving from a primary input device, like a keyboard, to an edge surface. However, we can estimate this Homing Time measure using the time span between pressing the 'continue' button (rendered 15 cm from the back of the top face) and the event starting (or ending) each set of trials.

After removing 212 outliers (2.5%), we find top face homing time is only 150 ms less than top ridge or front face. A significant main effect of surface ($F_{4,56}=35.34, p<.001$, $\eta_{G}^{2}=.20$) with post hoc tests shows T-FACE is fastest (1176ms),

Table 2: Min. target width (mm) \& throughput (bits/s)

Min. Width (mm)					Throughput (bits/s)		
	Tap	Cross	Drag	Tap	Cross	Drag	
TF	12.5	10.0	12.8	6.30	7.54	3.60	
TR	10.9	8.3	15.1	7.15	8.68	2.37	
FF	16.6	7.4	19.2	5.92	7.35	2.37	
BR	15.9	10.4	15.2	4.09	7.75	3.01	
BF	14.9	8.3	13.4	4.34	6.45	3.05	

followed by t-ridge (1327 ms) and F-FACE (1325 ms), and bRIDGE (1475 ms) and b-FACE (1442 ms) (all $p<.001$).

These times are slower than the keyboard-to-mouse homing factor, $\mathrm{H}(400 \mathrm{~ms})$, in the keystroke-level model [9]. This is likely due to a reaction time when our participants located the first task target in a set, or realize the set ended.

Effective Width and Fitts' Modelling

The distance between the centre of the target and the participant's contact point is recorded for every trial, and we calculate the effective target width by multiplying the standard deviation of these distances by 4.133. To make recommendations for minimum target width [36], we examine the average effective widths using the smallest target size (10 mm) for every task and surface. Results (Table 2) show crossing and dragging targets on the front face have the smallest (7.4 mm) and largest (19.2 mm) minimum target widths, respectively.

Given the high tapping error rates, we use $I D_{e}$, the effective index of difficulty [36], to model average speed using Fitts' law. Fitts' law has strong predictive power for all table edge surfaces: all 15 combinations of task and surface are modelled well, with all fitness values above 90% (Table 3). All models except T-RIDGE dragging (-75) have positive intercepts. T-FACE and B-RIDGE have the lowest TAP intercepts. For crossing, the intercepts for all edge surfaces are less than those for the top and bottom faces. T-RIDGE (-75) and F-FACE (235) have the lowest intercepts for DRAG.

The inverse of b gives average throughput [36]. For every surface, cross and DRAG have the highest and lowest throughput, respectively (Table 2). T-RIDGE produces the highest throughput for TAP ($7.15 \mathrm{bits} / \mathrm{s}$) and cross ($8.68 \mathrm{bits} / \mathrm{s}$), and T-FACE gives higher throughput for DRAG ($3.60 \mathrm{bits} / \mathrm{s}$).

Discussion

While the top ridge is consistently fast with low error rates and high subjective ratings, the bottom ridge is only fast and preferred for crossing. All three edge surfaces have crossing error rates below 6%. Crossing minimum target widths are smaller than those for tapping and dragging across all edge surfaces. Given these results, the top ridge may be the best surface for interaction techniques, and crossing tasks may generally be better suited for edge-of-table interactions.

Table 3: Fitts' model parameters

	Tap				Cross				
	a	b	R^{2}	a	b	R^{2}	a	b	R^{2}
					Drag				
TF	76	159	0.95	444	133	0.97	322	278	0.98
TR	145	140	0.99	322	115	0.96	-75	421	0.94
FF	122	169	0.91	384	136	0.98	235	423	0.92
BR	14	245	0.98	372	129	0.98	388	332	0.95
BF	262	231	1.00	507	155	1.00	414	328	0.98

Learning Effect. There are many factors that could have influenced learning. The crossing and dragging tasks may have been more difficult for participants to understand, since they required participants to touch the table, move their finger while maintaining contact, and release once they had passed through or reached the target. As participants were not told to use a particular hand posture or position, it is possible they took time to explore optimal strategies for each task.

Recall our analysis only uses block 3 due to a significant learning effect. Using more blocks for analysis reveals more details about the learning effect. Analysis with blocks 2 and 3 yields the same results with one exception: for TAP, there is a 37 ms difference in Selection Time between t-face (699 ms) and T-RIDGE (736 ms) ($p<.01$). Using all three blocks yields one more minor difference: for DRAG, T-FACE (1433 ms) is 70 ms faster than T -RIDGE $(1503 \mathrm{~ms})$ ($p<.05$). This suggests participants were learning more efficient methods of tapping and dragging with T-RIDGE during the first two blocks.

Preferences and Strategies for Touch Input. It is possible participants took time to explore optimal strategies for each task. For example, some participants positioned their fingers horizontally (P4, P5) and others rotated their chairs (P9) to interact with top ridge targets from the side. Some participants (P9, P12) crossed through top ridge targets by carefully maintaining contact with the top and front faces. Others 'flicked' through the top ridge upward (P3). With practice, most participants 'flicked' top ridge crossing targets in a downward motion in block 3, suggesting this is a preferred crossing strategy for index finger input.

The front and bottom faces are never preferred. Some participants (P2, P5, P6, P9) felt the front face was placed in a strange position, as lifting required them to move their entire arm rather than just their finger or wrist. Others (P2, P4, P9, P14) felt the bottom ridge and face were awkward due to poor hand or body positioning. P2 and P5 felt it was strange to lower their fingers after making contact with the table as they associated 'lifting' with an upward movement. P2 and P6 liked positioning their hands palm-up.

The bottom face was the slowest for all tasks, and more error prone than the top face for tapping tasks. The difference in tapping error rate reinforces Wigdor et al.'s results
[43]. For tap and cross, all three edge surfaces are faster than the bottom face. For drag, the top ridge is the only edge surface that outperforms the bottom face. While some participants (P6, P8, P9) enjoyed seeing a cursor follow their finger movements, P 2 and P 4 felt it was disorienting.
Participants tried several hand postures and techniques for each task, so it seems there is an opportunity for different postures and perhaps using different fingers [22]. As the top and bottom ridges had the highest rankings, fastest times, and low errors ($<6 \%$) for crossing, we explore crossing variations using the thumb along these two surfaces in a follow-up study. We include tapping to perform baseline comparisons. Participants' feedback on front face interaction was valuable. We try to improve front face interaction in the same follow-up study by introducing a "braced" hand posture [13] with less arm movement and occlusion.

5 EXPERIMENT 2 - USING A BRACED THUMB

We try to improve front face interaction using a "braced" touch posture, and explore how this posture affects task performance along the top and bottom ridges.

Participants and Procedure

We recruited 8 participants, ages 22 to 42 ($\mu=28, \sigma=4.13$), 2 were female, 6 were male, and 1 was left-handed. All reported experience using touchscreen devices. Remuneration was $\$ 5$. The same prototyping system as Experiment 1 was used.

The tasks, tapping and crossing, were the same as those used in Experiment 1. However, instead of using the index finger, the participant used their thumb. We explore thumb input since it was suggested by Cockburn et al. [12, 13] and data on minimum target width for thumb input would give more options for designers. As a variation on Cockburn et al.'s "braced" posture, other fingers were placed underneath the table to provide additional stability and minimize occlusion. Note our results from Experiment 1 suggest bracing from below is optimal, since the bottom face is less likely to be used for touch input due to its poor performance. The experimental procedure was identical to that of Experiment 1, except only two tasks were performed using three edge surfaces. The study lasted 20 minutes.

Design

This is a within-subjects design with two primary independent variables: task with 2 levels (tap, cross) and surface with 3 levels (T-Ridge, F-FACE, b-Ridge). block and id are secondary independent variables, with 3 and 5 levels respectively. All target widths and distances are the same as those used in Experiment 1. Each id variation was presented in random order. There were 3 blocks per combination of task and SURFACE, and the order for TASK was counter-balanced.

Figure 6: Selection Time (ms) by task for each surface

Figure 7: Error Rate (\%) by task for each surface

Primary measures include Selection Time and Error Rate. Selection Time is the time from the previous target selection until the current target selection, and Error Rate is the proportion of trials with task errors. There are also 8 subjective rankings. In total, there are: 2 TASKS $\times 3$ SURFACES $\times 3$ blocks $\times 5$ IDs $\times 5$ repetitions $=450$ data points per participant.

Results

For every combination of task, surface, and block, trial times more than 3 standard deviations from the mean were excluded as outliers. In total, 62 trials (1.9%) were removed. As was done in the previous study, we retroactively mark any crossing trial as successful if any line segments formed by the series of generated contact points intersects with the targets. A total of 310 crossing trials (19\%) were corrected.

Learning Effect. There is a significant main effect of block on Selection Time ($F_{2,16}=21.35, p<.001, \eta_{G}^{2}=.04$), but no interaction effects. Post hoc tests found вloск 1 and вцоск 2 are significantly slower than block 3 (both $p<.01$), though the difference between blocks 2 and 3 is small (42 ms). We use block 3 data for all subsequent analysis.

Selection Time. Considering all tasks, top ridge is faster than the front face and bottom ridge. There is a main effect of surface on Selection Time ($F_{2,16}=43.16, p<.001, \eta_{G}^{2}=.43$), with post hoc tests showing significant differences between all three surfaces (all $p<.001$). Overall, T-Ridge (879 ms) is faster than F-fACE (1029 ms) and b-Ridge (1344 ms). There are no interaction effects on Selection Time (Figure 6).
Error Rate. Considering all surfaces, crossing is less error prone than tapping. There is a significant main effect of TASK on Error Rate ($F_{1,8}=5.66, p<.05, \eta_{G}^{2}=.19$), where cross

Table 4: Min. target width (mm) \& throughput (bits/s)

	Min. Width (mm)		Throughput (bits/s)	
	Tap	Cross	Tap	Cross
TR	10.1	7.4	3.84	5.73
FF	14.5	13.0	4.47	5.98
BR	15.5	13.6	4.90	4.71

(5%) is less error prone than TAP (12\%). There are no other main effects nor any interaction effects (Figure 7).

Preference Scores. After completing a single TASk, participants ranked each surface from best to worst using the same criteria as Experiment 1 . We assign a Condorcet ranking to each condition. For both tasks, the rankings (T-ridge, F-FACE, b-RIDGE) are mostly identical across all four measures, with the exception of ease of learning for cross, where F-FACE and T-RIDGE are both ranked first.

Effective Width and Fitts' Modelling

Results (Table 4) show effective target widths for crossing are smaller than those for tapping. T-RIDGE crossing targets and b-RIDGE tapping targets have the smallest (7.4 mm) and largest (15.5 mm) minimum target widths, respectively.
$I D_{e}$ has strong predictive power for the top ridge and front face, where $\mathrm{R}^{2}>0.9$ (Table 5), but is not as strong for the bottom ridge ($\mathrm{R}^{2}>0.8$). T-RIDGE has a negative intercept for tap (-115), and the lowest intercept for cross (124). TAP has lower intercepts than cross for T-Ridge and f-FACE, but the intercept is lower for cross with b-Ridge. b-Ridge and F-FACE have the highest throughputs for TAP ($4.90 \mathrm{bits} / \mathrm{s}$) and cross ($5.98 \mathrm{bits} / \mathrm{s}$), respectively. For T-RIDGE and F-FACE, throughput is higher for cross than tap.

Comparing Thumb to Index Finger

In Experiment 1, participants used their index finger to interact with targets. In Experiment 2, participants used their thumb and rested their other fingers underneath the table to stabilize arm movements [13] and minimize occlusion. To compare postures, we define a 3-level factor SURFACE* for the three edge surfaces (T-Ridge, f-FACE, b-Ridge), a 2-level factor TASK* (TAP, CROSS), and a new, 2-level factor posture (pOINTING, BRACED). We use the same analysis methods as before, however, we use a mixed-factorial ANOVA where posture is a between-subjects factor and task and surface are repeated measures.
Index finger input is always faster than braced touch, with the difference as low as 77 ms for crossing on the top ridge to 478 ms for tapping on the bottom ridge. A significant main effect of posture on Selection Time ($F_{1,22}=13.67, p<.001$, $\eta_{G}^{2}=.22$) with post hoc tests shows pointing (857 ms) is faster than braced (1084 ms). There is also an interaction

Table 5: Fitts' model parameters

	Tap			Cross			
	a	b	R^{2}	a	b	R^{2}	
TR	-115	260	0.95	124	175	0.96	
FF	123	224	0.93	421	167	0.95	
BR	733	204	0.83	419	212	0.86	

between posture and Surface $\left(F_{2,44}=5.66, p<.001, \eta_{G}^{2}=\right.$.05). Post hoc tests show pointing is always faster than braced (all $p<.001$). For TAP, BRACED is $168 \mathrm{~ms}(24 \%), 186 \mathrm{~ms}$ (24%), and 478 ms (50%) slower than pointing for T-RIDGE, f-FACE, and b-RIDGE, respectively. For cross, it is $77 \mathrm{~ms}(9 \%)$, 124 ms (13%), and $354 \mathrm{~ms}(40 \%)$ slower than POINTING for T RIDGE, F-FACE, and b-RIDGE, respectively. This is similar to Cockburn et al.'s results for the "static" condition [13].

Index finger input is less error prone than braced touch. Considering all tasks and surfaces, a significant main effect of posture on Error Rate ($F_{1,22}=6.65, p<.05, \eta_{G}^{2}=.04$) shows pointing (6%) is less error prone than BRACED (8%). There are no interaction effects involving posture. For tap, BRACED is $7 \%, 2 \%$, and 5% more error prone than POINTING for t-ridge, f-face, and b-RIdge, respectively. For cross, it is 1% more error prone than Pointing for all edge surfaces.

Minimum target widths for tapping are always smaller using the thumb. For the front face, the difference in target width is over 2 mm . Crossing widths are smaller with index finger interaction, with the exception of crossing on the top ridge. Index finger input yields higher tapping throughput for the front face and top ridge. Tapping on the bottom ridge yields higher throughput with thumb input. Crossing throughput is always better using the index finger.

Discussion

For both tasks, top ridge and bottom ridge are the fastest and slowest surfaces, respectively. Cross is less error prone than tap across all surfaces. A pointing posture may be better suited for edge-of-table interactions. While the braced touch posture is slower, the difference in error rate is small for crossing. This posture could still be used for infrequent crossing actions.
Preferences and Strategies for Touch Input. Most participants (P1, P2, P3, P5, P6) agreed the braced posture was awkward for bottom ridge interactions. P1 felt it was difficult to reach targets on her non-dominant-hand side, as she had to cross her arm over her body. Others (P2, P6) re-positioned the chair to reach these targets. Braced touch interactions should be performed along the user's dominant hand-side.

While we introduced a braced posture to stabilize arm movement, some participants (P1, P6) felt the posture was tiring along the front face as well due to awkward wrist
placement. Participants may have experienced discomfort from trying to maintain contact with the bottom face using the entire hand. Others may not have adjusted wrist rotation based on target location. Braced interactions may be more comfortable if the wrist-forearm angle is minimized.

6 GENERAL DISCUSSION

We rephrase the most relevant results as design recommendations, discuss example applications for table edge interaction, and finally, discuss possible limitations in our methods.

Design Recommendations

Hand Postures. A pointing posture should always be prioritized over a braced hand posture due to its faster speeds and lower error rates. A braced hand posture could be used to trigger infrequent commands that do not require speed. If a braced hand posture is to be used, user interfaces should be placed along the user's dominant-hand side to minimize arm and wrist discomfort. A braced hand posture should only be used along the top ridge and front face for crossing tasks; the bottom ridge performs too poorly to justify its use.

Tasks and Surfaces. The top ridge is fast with low error rates, and is a good candidate for tapping, crossing, and dragging. Interaction along the top ridge should always be prioritized. The front face can support all three tasks, but due to slower speeds and physical discomfort, should not be used as often. Interactions along the front face should minimize arm and wrist movement. As top ridge and front face error rates are consistent across tasks, we recommend tapping tasks to be prioritized, as they are faster. Crossing is a comparable alternative. Dragging should be used when speed is not necessary. The bottom ridge should only be used for crossing tasks.
Minimum Target Size. For a braced thumb tap, targets should be at least 10.1 mm wide for top ridge and 14.5 mm wide for front face. Crossing targets should be 7.4 mm or 13 mm wide for top ridge and front face, respectively. With a pointing posture, top ridge targets should be at least $10.9 \mathrm{~mm}, 8.3 \mathrm{~mm}$, and 15.1 mm wide for tap, cross, and drag. Targets placed along the front face should be at least $16.6 \mathrm{~mm}, 7.4 \mathrm{~mm}$, and 19.2 mm wide for tap, cross, and drag. Bottom ridge crossing targets should at least 10.4 mm wide.

Example Applications

Notification Tray - The front face becomes a notification tray for emails, tweets, weather updates, and meeting reminders. Different edge interactions can: adjust notification settings like "snooze" time; dismiss a notification; access shortcut actions such as "liking" a tweet or sending a "canned" email reply; and viewing notification details on a computer or nearby wall display using SAR (Figure 8).

Figure 8: Example edge-of-table notification application: (a) drag along top ridge to configure notification snooze time; (b) cross bottom ridge to dismiss a notification; (c) braced thumb tap on front face to reveal shortcut actions like email quick replies, actions are selected using tap on top ridge; (d) cross top ridge to view notification details on desktop or nearby wall.

Smart Home Control - The table edge becomes a menu to adjust smart home functions, like heating, lights, security, and media. Available functions appear along the top ridge and crossing through an item selects it. Sliders, toggles, and buttons appear on the front face for users to adjust settings.

Limitations

Touch Pitch and Roll. We mimic a touchscreen by using a marker's location to establish a single point of contact between the table and finger. While this technique works well for the area underneath the finger, participants may be tempted to interact with content using the side of their finger. This input works with touchscreens, but our system may categorize it as an error. Previous work [21] shows touch pitch and roll distributions are similar for tap and drag. Given this, and low cross and drag error rates, this limitation is minor.

Occlusion. Many participants from Experiment 1 agreed targets were occluded on the top face (P4, P6, P7, P9, P14, P15), but only two participants ($\mathrm{P} 4, \mathrm{P} 7$) ranked it as the worst or second worst surface for this reason. As occlusion did not seem to affect most participants' rankings or performance, this is a minor issue. Multi-projector SAR systems or tables with built-in capacitive sensing could help reduce this effect.

External Validity. We used reciprocal Fitts' law task trials to measure repeated touch input performance and provide recommendations for minimum target width, a reasonable approach for our initial exploration. While we do not believe edge-of-table input is strictly for single actions interleaved with a primary device, examining homing time in more detail may provide additional insight into performance.

7 CONCLUSION AND FUTURE WORK

We explored the possibilities of touch input along the edge of table-like surfaces. Results from a one-finger input user study show all edge surfaces could support interaction. The top and bottom ridges are the fastest surfaces for crossing and all edge surfaces have error rates below 6%. Braced touch input has poorer performance. Effective width analysis shows minimum target width is 7.4 mm to 19.2 mm and 7.4 mm to 15.5 mm for the index finger and thumb, respectively.

Our work suggests new topics for future research. Our prototyping system could be improved by using multiple projectors to minimize target occlusion. Capacitive sensors
placed on a table could track finger position, creating a "3D surface touchscreen." Smaller prototyping systems, such as those used in [33] could also be used.
Perhaps most exciting, are the many other possibilities for edge-tailored postures and gestures. For example, multitouch input could be explored, such as two-finger crossing on ridges. A subtle variation for the braced thumb posture is resting the fingers on the top face. This may be slightly more comfortable, but likely causes more occlusion. The thumb and middle fingers could also brace using the top and bottom faces simultaneously, with the free index finger used for front face input. This simultaneous top and bottom brace could be extended into a "grab" posture, where multi-surface thumb and index taps, crosses, and drags work as advanced gestures distinct from single-surface equivalents. The affordance of a table edge naturally suggests this type of posture. Finally, other table surfaces could be explored, such as corners and legs. Physical properties of surfaces could be exploited: ridges can be chamfered, rounded, or sharp, and faces can be made in different profiles and textures. Other table-like objects could be studied, like cupboards and window ledges.

Any unused surfaces in the environment could become meaningful interactive displays. Our work extends the scope of touch interaction and presents empirical evidence on the types of edge-of-table interactions people enjoy, and are capable of performing. We believe these results can help designers and researchers create more meaningful interactions that can be implemented and adopted in our everyday lives.

8 ACKNOWLEDGEMENTS

We would like to thank Jeremy Hartmann, Greg d'Eon, and Josh Jung for their help debugging our prototyping system and sharing analysis scripts. This work was made possible by the NSERC Discovery Grant (\#2018-05187), the Canada Foundation for Innovation Infrastructure Fund "Facility for Fully Interactive Physio-digital Spaces" (\#33151), and Ontario Early Researcher Award (\#ER16-12-184).

REFERENCES

[1] Johnny Accot and Shumin Zhai. 1997. Beyond Fitts' Law: Models for Trajectory-based HCI Tasks. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI '97). ACM, New York, NY, USA, 295-302. https://doi.org/10.1145/258549.258760
[2] Johnny Accot and Shumin Zhai. 2002. More Than Dotting the I's Foundations for Crossing-based Interfaces. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (CHI '02). ACM, New York, NY, USA, 73-80. https://doi.org/10.1145/503376.503390
[3] Michelle Annett, Tovi Grossman, Daniel Wigdor, and George Fitzmaurice. 2011. Medusa: A Proximity-aware Multi-touch Tabletop. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology (UIST '11). ACM, New York, NY, USA, 337-346. https://doi.org/10.1145/2047196.2047240
[4] Myroslav Bachynskyi, Gregorio Palmas, Antti Oulasvirta, Jürgen Steimle, and Tino Weinkauf. 2015. Performance and Ergonomics of Touch Surfaces: A Comparative Study Using Biomechanical Simulation. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI '15). ACM, New York, NY, USA, 1817-1826. https://doi.org/10.1145/2702123.2702607
[5] Patrick Baudisch and Gerry Chu. 2009. Back-of-device Interaction Allows Creating Very Small Touch Devices. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '09). ACM, New York, NY, USA, 1923-1932. https://doi.org/10.1145/1518701. 1518995
[6] Hrvoje Benko, Ricardo Jota, and Andrew Wilson. 2012. MirageTable: Freehand Interaction on a Projected Augmented Reality Tabletop. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '12). ACM, New York, NY, USA, 199-208. https://doi.org/ 10.1145/2207676.2207704
[7] Hrvoje Benko, Andrew D. Wilson, and Ravin Balakrishnan. 2008. Sphere: Multi-touch Interactions on a Spherical Display. In Proceedings of the 21st Annual ACM Symposium on User Interface Software and Technology (UIST '08). ACM, New York, NY, USA, 77-86. https: //doi.org/10.1145/1449715.1449729
[8] Xiaojun Bi, Tovi Grossman, Justin Matejka, and George Fitzmaurice. 2011. Magic Desk: Bringing Multi-touch Surfaces into Desktop Work. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '11). ACM, New York, NY, USA, 2511-2520. https://doi. org/10.1145/1978942.1979309
[9] Stuart K. Card, Thomas P. Moran, and Allen Newell. 1980. The Keystroke-level Model for User Performance Time with Interactive Systems. Commun. ACM 23, 7 (July 1980), 396-410. https://doi.org/10. 1145/358886.358895
[10] Kai-Yin Cheng, Rong-Hao Liang, Bing-Yu Chen, Rung-Huei Laing, and Sy-Yen Kuo. 2010. iCon: Utilizing Everyday Objects As Additional, Auxiliary and Instant Tabletop Controllers. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '10). ACM, New York, NY, USA, 1155-1164. https://doi.org/10.1145/ 1753326.1753499
[11] A. Cockburn, D. Ahlström, and C. Gutwin. 2012. Understanding Performance in Touch Selections: Tap, Drag and Radial Pointing Drag with Finger, Stylus and Mouse. Int. 7. Hum.-Comput. Stud. 70, 3 (March 2012), 218-233. https://doi.org/10.1016/j.ijhcs.2011.11.002
[12] Andy Cockburn, Carl Gutwin, Philippe Palanque, Yannick Deleris, Catherine Trask, Ashley Coveney, Marcus Yung, and Karon MacLean. 2017. Turbulent Touch: Touchscreen Input for Cockpit Flight Displays. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI '17). ACM, New York, NY, USA, 6742-6753. https://doi.org/10.1145/3025453.3025584
[13] A. Cockburn, D. Masson, C. Gutwin, P. Palanque, A. Goguey, M. Yung, C. Gris, and C. Trask. 2019. Design and evaluation of braced touch for touchscreen input stabilisation. International fournal of HumanComputer Studies 122 (2019), 21 - 37. https://doi.org/10.1016/j.ijhcs. 2018.08.005
[14] Daniel Cotting, Markus Gross, and Markus Gross. 2006. Interactive Environment-aware Display Bubbles. In Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology (UIST '06). ACM, New York, NY, USA, 245-254. https://doi.org/10.1145/1166253.

1166291
[15] Paul Dietz and Darren Leigh. 2001. DiamondTouch: A Multi-user Touch Technology. In Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology (UIST '01). ACM, New York, NY, USA, 219-226. https://doi.org/10.1145/502348.502389
[16] Jerry Alan Fails and Dan Olsen Jr. 2002. Light Widgets: Interacting in Every-day Spaces. In Proceedings of the 7th International Conference on Intelligent User Interfaces (IUI '02). ACM, New York, NY, USA, 63-69. https://doi.org/10.1145/502716.502729
[17] Paul M Fitts. 1954. The information capacity of the human motor system in controlling the amplitude of movement. (1954), 381-391 pages. https://doi.org/10.1037/h0055392
[18] Clifton Forlines, Daniel Wigdor, Chia Shen, and Ravin Balakrishnan. 2007. Direct-touch vs. Mouse Input for Tabletop Displays. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '07). ACM, New York, NY, USA, 647-656. https: //doi.org/10.1145/1240624.1240726
[19] Euan Freeman and Stephen Brewster. 2013. Messy Tabletops: Clearing Up the Occlusion Problem. In CHI '13 Extended Abstracts on Human Factors in Computing Systems (CHI EA '13). ACM, New York, NY, USA, 1515-1520. https://doi.org/10.1145/2468356.2468627
[20] Jon Froehlich, Jacob O. Wobbrock, and Shaun K. Kane. 2007. Barrier Pointing: Using Physical Edges to Assist Target Acquisition on Mobile Device Touch Screens. In Proceedings of the 9th International ACM SIGACCESS Conference on Computers and Accessibility (Assets '07). ACM, New York, NY, USA, 19-26. https://doi.org/10.1145/1296843. 1296849
[21] Alix Goguey, Géry Casiez, Daniel Vogel, and Carl Gutwin. 2018. Characterizing Finger Pitch and Roll Orientation During Atomic Touch Actions. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI '18). ACM, New York, NY, USA, Article 589, 12 pages. https://doi.org/10.1145/3173574.3174163
[22] Alix Goguey, Mathieu Nancel, Géry Casiez, and Daniel Vogel. 2016. The Performance and Preference of Different Fingers and Chords for Pointing, Dragging, and Object Transformation. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI '16). ACM, New York, NY, USA, 4250-4261. https://doi.org/10.1145/ 2858036.2858194
[23] Nan-Wei Gong, Jürgen Steimle, Simon Olberding, Steve Hodges, Nicholas Edward Gillian, Yoshihiro Kawahara, and Joseph A. Paradiso. 2014. PrintSense: A Versatile Sensing Technique to Support Multimodal Flexible Surface Interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '14). ACM, New York, NY, USA, 1407-1410. https://doi.org/10.1145/2556288.2557173
[24] Tiago Guerreiro, Hugo Nicolau, Joaquim Jorge, and Daniel Gonçalves. 2010. Towards Accessible Touch Interfaces. In Proceedings of the 12th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS '10). ACM, New York, NY, USA, 19-26. https: //doi.org/10.1145/1878803.1878809
[25] Hiroshi Ishii, Craig Wisneski, Scott Brave, Andrew Dahley, Matt Gorbet, Brygg Ullmer, and Paul Yarin. 1998. ambientROOM: Integrating Ambient Media with Architectural Space. In CHI 98 Conference Summary on Human Factors in Computing Systems (CHI '98). ACM, New York, NY, USA, 173-174. https://doi.org/10.1145/286498.286652
[26] Brett Jones, Rajinder Sodhi, Michael Murdock, Ravish Mehra, Hrvoje Benko, Andrew Wilson, Eyal Ofek, Blair MacIntyre, Nikunj Raghuvanshi, and Lior Shapira. 2014. RoomAlive: Magical Experiences Enabled by Scalable, Adaptive Projector-camera Units. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (UIST '14). ACM, New York, NY, USA, 637-644. https: //doi.org/10.1145/2642918.2647383
[27] Shaun K. Kane, Daniel Avrahami, Jacob O. Wobbrock, Beverly Harrison, Adam D. Rea, Matthai Philipose, and Anthony LaMarca. 2009. Bonfire: A Nomadic System for Hybrid Laptop-tabletop Interaction. In Proceedings of the 22Nd Annual ACM Symposium on User Interface Software and Technology (UIST '09). ACM, New York, NY, USA, 129-138. https://doi.org/10.1145/1622176.1622202
[28] Mohammadreza Khalilbeigi, Jürgen Steimle, Jan Riemann, Niloofar Dezfuli, Max Mühlhäuser, and James D. Hollan. 2013. ObjecTop: Occlusion Awareness of Physical Objects on Interactive Tabletops. In Proceedings of the 2013 ACM International Conference on Interactive Tabletops and Surfaces (ITS '13). ACM, New York, NY, USA, 255-264. https://doi.org/10.1145/2512349.2512806
[29] Yuexing Luo and Daniel Vogel. 2014. Crossing-based Selection with Direct Touch Input. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '14). ACM, New York, NY, USA, 2627-2636. https://doi.org/10.1145/2556288.2557397
[30] Thomas W. Malone. 1983. How Do People Organize Their Desks?: Implications for the Design of Office Information Systems. ACM Trans. Inf. Syst. 1, 1 (Jan. 1983), 99-112. https://doi.org/10.1145/357423.357430
[31] Esben Warming Pedersen and Kasper Hornbæk. 2012. An Experimental Comparison of Touch Interaction on Vertical and Horizontal Surfaces. In Proceedings of the 7th Nordic Conference on Human-Computer Interaction: Making Sense Through Design (NordiCHI '12). ACM, New York, NY, USA, 370-379. https://doi.org/10.1145/2399016.2399074
[32] Ramesh Raskar, Greg Welch, Matt Cutts, Adam Lake, Lev Stesin, and Henry Fuchs. 1998. The Office of the Future: A Unified Approach to Image-based Modeling and Spatially Immersive Displays. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '98). ACM, New York, NY, USA, 179-188. https://doi.org/10.1145/280814.280861
[33] Anne Roudaut, Henning Pohl, and Patrick Baudisch. 2011. Touch Input on Curved Surfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '11). ACM, New York, NY, USA, 1011-1020. https://doi.org/10.1145/1978942.1979094
[34] Farzan Sasangohar, I. Scott MacKenzie, and Stacey D. Scott. 2009. Evaluation of Mouse and Touch Input for a Tabletop Display Using Fitts' Reciprocal Tapping Task. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 53, 12 (2009), 839-843. https://doi.org/10.1177/154193120905301216 arXiv:https://doi.org/10.1177/154193120905301216
[35] Andrew Sears and Ben Shneiderman. 1991. High precision touchscreens: design strategies and comparisons with a mouse. International fournal of Man-Machine Studies 34, 4 (1991), 593-613. https://doi.org/10.1016/0020-7373(91)90037-8
[36] R. William Soukoreff and I. Scott MacKenzie. 2004. Towards a standard for pointing device evaluation, perspectives on 27 years of FittsâĂŹ law research in HCI. International Journal of Human-Computer Studies 61, 6 (2004), 751 - 789. https://doi.org/10.1016/j.ijhcs.2004.09.001 Fitts' law 50 years later: applications and contributions from human-computer interaction.
[37] Aurelien Tabard, Simon Gurn, Andreas Butz, and Jakob Bardram. 2013. A Case Study of Object and Occlusion Management on the eLabBench, a Mixed Physical/Digital Tabletop. In Proceedings of the 2013 ACM International Conference on Interactive Tabletops and Surfaces (ITS '13). ACM, New York, NY, USA, 251-254. https://doi.org/10.1145/2512349. 2512794
[38] Nicolas Villar, Shahram Izadi, Dan Rosenfeld, Hrvoje Benko, John Helmes, Jonathan Westhues, Steve Hodges, Eyal Ofek, Alex Butler, Xiang Cao, and Billy Chen. 2009. Mouse 2.0: Multi-touch Meets the Mouse. In Proceedings of the 22Nd Annual ACM Symposium on User Interface Software and Technology (UIST '09). ACM, New York, NY, USA, 33-42. https://doi.org/10.1145/1622176.1622184
[39] Malte Weiss, Simon Voelker, Christine Sutter, and Jan Borchers. 2010. BendDesk: Dragging Across the Curve. In ACM International Conference on Interactive Tabletops and Surfaces (ITS '10). ACM, New York, NY, USA, 1-10. https://doi.org/10.1145/1936652.1936654
[40] Pierre Wellner. 1993. Interacting with Paper on the DigitalDesk. Commun. ACM 36, 7 (July 1993), 87-96. https://doi.org/10.1145/159544. 159630
[41] Daniel Wigdor, Hrvoje Benko, John Pella, Jarrod Lombardo, and Sarah Williams. 2011. Rock \&\#38; Rails: Extending Multi-touch Interactions with Shape Gestures to Enable Precise Spatial Manipulations. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '11). ACM, New York, NY, USA, 1581-1590. https://doi.org/10.1145/1978942.1979173
[42] Daniel Wigdor, Clifton Forlines, Patrick Baudisch, John Barnwell, and Chia Shen. 2007. Lucid Touch: A See-through Mobile Device. In Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology (UIST '07). ACM, New York, NY, USA, 269-278. https://doi.org/10.1145/1294211.1294259
[43] Daniel Wigdor, Darren Leigh, Clifton Forlines, Samuel Shipman, John Barnwell, Ravin Balakrishnan, and Chia Shen. 2006. Under the Table Interaction. In Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology (UIST '06). ACM, New York, NY, USA, 259-268. https://doi.org/10.1145/1166253.1166294
[44] Andrew D. Wilson. 2010. Using a Depth Camera As a Touch Sensor. In ACM International Conference on Interactive Tabletops and Surfaces (ITS '10). ACM, New York, NY, USA, 69-72. https://doi.org/10.1145/ 1936652.1936665
[45] Raphael Wimmer, Fabian Hennecke, Florian Schulz, Sebastian Boring, Andreas Butz, and Heinrich Hu. 2010. Curve: Revisiting the Digital Desk. In Proceedings of the 6th Nordic Conference on Human-Computer Interaction: Extending Boundaries (NordiCHI '10). ACM, New York, NY, USA, 561-570. https://doi.org/10.1145/1868914.1868977
[46] Jacob O. Wobbrock, Brad A. Myers, and Htet Htet Aung. 2008. The Performance of Hand Postures in Front- and Back-of-device Interaction for Mobile Computing. Int. 7. Hum.-Comput. Stud. 66, 12 (Dec. 2008), 857-875. https://doi.org/10.1016/j.ijhcs.2008.03.004
[47] Jacob O. Wobbrock, Brad A. Myers, Htet Htet Aung, and Edmund F. LoPresti. 2003. Text Entry from Power Wheelchairs: Edgewrite for Joysticks and Touchpads. SIGACCESS Access. Comput. 77-78 (Sept. 2003), 110-117. https://doi.org/10.1145/1029014.1028650
[48] Jacob O. Wobbrock, Brad A. Myers, and John A. Kembel. 2003. EdgeWrite: A Stylus-based Text Entry Method Designed for High Accuracy and Stability of Motion. In Proceedings of the 16th Annual ACM Symposium on User Interface Software and Technology (UIST '03). ACM, New York, NY, USA, 61-70. https://doi.org/10.1145/964696.964703
[49] Robert Xiao, Chris Harrison, and Scott E. Hudson. 2013. WorldKit: Rapid and Easy Creation of Ad-hoc Interactive Applications on Everyday Surfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '13). ACM, New York, NY, USA, 879-888. https://doi.org/10.1145/2470654.2466113
[50] H. P. Young. 1988. Condorcet's Theory of Voting. American Political Science Review 82, 4 (1988), 1231-1244. https://doi.org/10.2307/1961757

