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ABSTRACT
Tables, desks, and counters are often nearby, motivating
their use as interactive surfaces. However, they are typically
cluttered. As an alternative, we explore touch input along
the ‘edge’ of table-like surfaces. The performance of tapping,
crossing, and dragging is tested along the two ridges and
front face of a table edge. Results show top ridge movement
time is comparable to the top face when tapping or dragging.
When crossing, both ridges are at least 11% faster than the top
face. Effective width analysis is used to model performance
and provide recommended target sizes. Based on observed
user behaviour, variations of top and bottom ridge crossing
are explored in a second study, and design recommendations
with example applications are provided.
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1 INTRODUCTION
With Spatial Augmented Reality (SAR) [32] any surface in
an environment can act as an interactive display, and a large,
flat, horizontal surface like a table, counter, or desk is often
nearby. This availability motivates their use as an interactive
touch surface [6, 15, 27, 40, 49] and led to several touch per-
formance evaluations [18, 31, 35]. However tables, counters,
and desks are often cluttered [10], so using a large portion
of the top for interaction may not be practical.
There are other unobstructed table surfaces that could

support interaction. The bottom face is an obvious option
[43], but a table edge has a vertical face and two ridges which
may support common interaction techniques. Researchers
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have examined interaction on other types of surfaces, such
as convex hemispheres [33] and raised ridges [20, 24, 46–48],
but the specific surfaces located around the edge of a table
have not been investigated. As the region nearest the user on
a touch tabletop is faster and easier to use [8], edge surfaces
may have similar advantages.

We compare the speed and accuracy of touch input when
tapping, crossing, and dragging on three surfaces that form
a table edge: a vertical front face, a top ridge, and a bottom
ridge (Figure 1). We use a 1D Fitts’ law [17] task and compare
performance to using the top and bottom faces. An initial
experiment explored using the index finger since it is most
natural and common, and a second experiment extended our
inquiry to using the thumb with a “braced” posture [13].

We contribute empirical results that validate the potential
for touch input along the edge of a table. Top ridge interaction
is often preferred, and its movement time is comparable to
the top face when tapping or dragging with an index finger.
When crossing, both ridges are at least 11% faster than the top
face, and errors are below 6% for all surfaces. Effective width
analysis shows minimum target widths are 7.4 to 19.2 mm.
The thumb has poorer performance than the index finger.
Our work sets a foundation for designers and researchers to
adopt and explore new edge-of-table interactions.

2 BACKGROUND AND RELATEDWORK
The majority of previous work focuses on a single, large
horizontal surface [18, 34]. Here, we describe those relevant
to our study choices or factors that might influence touch on
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Figure 1: Edge of table interaction: (a) edge surfaces; (b) in-

dex finger on top ridge; (c) alternative braced thumb posture;

(d) using edge touches to control remote SAR content.
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a table edge. Luo and Vogel [29] show there is no significant
difference in speed and error rate between crossing through
horizontal and vertical targets. We primarily use horizontal
crossing targets in our experiments with some evaluation for
horizontal versus vertical on compatible table edge surfaces.
Cockburn et al. [11] show friction between fingers and the
touchscreen makes dragging slower than tapping. With a
table edge, dragging along thin ridge surfaces may create
less friction. Guerreiro et al. [24] show tapping is preferred
to crossing and directional gesturing, but the natural 1D
affordance of a ridge may be more suitable for crossing.

A formative study for Bi et al.’s Magic Desk [8] compared
touch performance over different regions of a tabletop. One-
handed tasks performed in the region nearest the user were
generally faster, however, they also report that this region
can be occluded by the user’s hands. The table edge is com-
posed of surfaces closest to the user, so a balance between
speed and hand occlusion may be a challenge. In addition, Bi
et al. [8] studied two-handed tasks, and found both near and
far regions were faster and easier overall. We focus on one-
handed input in our experiments, but we include two-handed
input in our larger table edge interaction design space.
In addition, work has compared horizontal and vertical

surfaces. Pedersen and Hornbæk’s work [31] shows tapping
is 5% faster on vertical surfaces, and dragging is 5% faster
and less error-prone on horizontal surfaces. Bachynskyi et
al. [4] find that interactions using a tabletop yield 14% more
throughput than a vertical display. Forlines et al. [18] note
that one-finger contact is similar at any location of a vertical
touchscreen and other fingers are often ‘tucked’ away. When
interacting with targets further away on horizontal surfaces,
other fingers can come in closer contact with the touchscreen
and cause accidental touch input. Locations closer to the user
may be better for touch input on horizontal surfaces.

The bottom of a table has been examined by Wigdor et al.
[43]. Using bimanual interaction, they found larger targets
may be selected from underneath the table without visual
feedback. Related work examining mobile back-of-device
interaction suggests visual feedback is preferred, if not nec-
essary, to interact with hidden surfaces [5, 42, 46].

Interactions on Non-Planar Surfaces. Previous work on non-
planar touch input focused on curved devices, such as Sphere
[7] and a Mouse case [38]. Roudaut et al. [33] explore touch
on smooth surface curvatures, and found convex surfaces
increase pointing accuracy. A table edge’s ridges can be con-
sidered convex, although not smooth. Curve [45] and Bend-
Desk [39] combine horizontal and vertical touch surfaces
using a curved concave edge, but dragging along this curve
is slower [39]. A table edge’s ridges could also be used to
drag content across two differently-oriented surfaces.

Others have used raised physical ridges to increase task
precision [20, 24, 46–48]. EdgeWrite [48] is a text entry tech-
nique that allows users to write letters along the ridges of a
small square hole. When comparing touch to joystick input,
Wobbrock et al. [47] show using EdgeWrite with touch input
is preferred among participants and leads to faster interac-
tion times. EdgeWrite is faster using the index finger on the
front of a touchscreen for one- and two-handed interactions.

Although touch input along a table edge has not been ex-
amined, previous work suggests it may be a strong candidate
for meaningful interactions due to its physical properties.

3 TOUCH INPUT AT THE EDGE OF A TABLE
Table-like objects are almost always around us. We work
at desks, eat at tables, gather around bars, prepare food on
counters, reach for objects on shelves, and use tools at work-
benches. The near-future vision for surface-mapped SAR
[32] combined with high quality touch input throughout the
environment using depth cameras [44, 49] or flexible capaci-
tive sensors [23] means ubiquitous surfaces can also be used
as interactive digital displays. Systems like Digital Desk [40],
ambientROOM [25], LightWidgets [16], Bonfire [27], and
WorldKit [49] demonstrate different applications for touch-
enabled SAR, like a pervasive calculator, ambient displays, a
volume control, viewing notifications, and dimming lights.

Table-like surfaces are often cluttered. Malone’s [30] inter-
views with office workers found tables piled with documents.
In Cheng et al.’s [10] survey to understand the objects people
have on their desk, participants never worked at an empty
table. Tabard et al. [37] report physical object occlusion as a
primary issue for their eLabBench tabletop system. Others
have acknowledged clutter indirectly, by proposing display
techniques to accommodate a cluttered surface [14, 19, 28].

We examine interactions around a table edge as table-like
objects are ubiquitous, they can be augmented using SAR
and touch sensors, and they cannot be cluttered.

Figure 2: System used for testing edge-of-table interactions
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Potential Design Space and Applications
The edge of a table-like object has many interesting physi-
cal properties such as faces, ridges, and corners of varying
shapes, sizes, and textures that could support touch input.
Corners could replicate menu selection buttons; sliding along
a straight table ridge using one or two fingers could control
volume, ‘flicking’ the bottom ridge with one finger could
trigger discrete events, like dismissing notifications; grab-
bing the table edge with the whole hand could pause a video
player; and ‘pinching’ the index and thumb along a table’s
front and top faces, like a cross surface pinch-to-zoom, could
create an input dimension that spans multiple surfaces.

Compared to the tabletop, table edge surfaces may bemore
easily grasped eyes-free. Shorter users, like young children,
could interact with the front face due to its reachable height
and access more useful IOT functions like dimming the lights
in a kitchen. For users with motor impairments, touch input
along a ridge may help stabilize their movements [46, 47].

Given this large, mostly unexplored design space, we focus
on touch interactions along the edge of a rectangular table,
which consists of a front face and two ridges. Ridges are
one-dimensional, but we believe they could still support
meaningful interaction as sliders or crossing targets. As we
are not proposing using the table’s edge as a general purpose
2D touch pad, this physical property is not an issue.
There are several touch operations such as 2D rotation,

scaling, and translation. Many input strategies exist: multi-
touch [3, 41], bimanual [43] input, and input with different
fingers [22] or finger orientations [21]. We focus on three
common operations: tap, cross, and drag with the index fin-
ger and explore a “braced” [13] thumb in a second study.
As ridges are raised surfaces, the tactile feedback when

tapping may seem ‘button-like,’ and improve performance.
Ridges are also 1D in nature, which may pair well with cross-
ing, where the ridge becomes the crossing target. It is unclear
if dragging is suitable for edge-of-table interactions.

Prototyping System
We simulate future display and touch sensing at the edge of
a table using SAR projection and motion tracking (Figure 2).

SAR Projection Display. The system is built around a 61 cm ×

122 cm rectangular table (height 72 cm and 3 cm thick top). A
single 1280 × 720 resolution projector mounted to the right
of the table is angled to project onto the top face, top ridge,
front face, and bottom ridge. One limitation of this approach
is that the hand may occlude part of the projected content. In
practice, we found the size of a finger minimized occlusion
of the immediate area, and people visually acquire targets
before motor movement ends. The RoomAlive toolkit [26]
is used to calibrate projector transformations to enable pro-
jection mapping to the table surfaces. Some manual tuning

was required to precisely align the 3D model of the table to
the real table. A server (Windows 10, Core i7-6850K) runs a
custom Unity3D 5.6.1 application, which processes tracked
finger positions and renders projection-mapped content to
the projector at 60 FPS using a GeForce GTX 1080 8G GPU.

Motion Tracked Touch. A 10-camera Vicon system tracks a
finger using a single 9.5 mm marker. Ten cameras track a
140 cm × 170 cm area around the front edge of the table.

To account for finger thickness and contact angle, a per-
user calibration is used. For each surface, the user places
their finger at the centre of two small pink targets spaced
52 cm apart. At each position, the 3D offset vector from the
finger marker to the target centre is recorded. During system
operation, a linear interpolation between the two 3D vectors
captured for the closest surface is used to find the position
of the finger relative to the tracked marker.

Tracking quality is quite good, but due to the user’s hand
and the table’s large solid surface, the marker can be mo-
mentarily occluded causing its position to “flicker.” To com-
pensate for this, touch down events are detected when the
calibrated finger position is less than 3 mm away from a
surface, and touch up events when it is at least 10 mm away.

4 EXPERIMENT 1 - USING INDEX FINGER
The goal of this experiment is to measure the speed and
accuracy of one-dimensional, single-touch tapping, dragging,
and crossing using the two ridges and face of a table edge,
with top and bottom faces included as baseline comparisons.
The results are used to calculate throughput and establish
minimum target widths using effective width analysis.

Participants and Apparatus
We recruited 15 participants, ages 23 to 39 (µ = 27, σ = 4.13),
5 were female, 10 were male, and 1 was left-handed. All
previously used touchscreen devices. Remuneration was $15.

Participants sat in a standard office chair facing the table
system (described above), with their body centered on the
interactive area. The tracking marker was attached to the
index finger using hypoallergenic tape. The touch offset
calibration method was performed for each participant on
all tested surfaces. To reduce friction caused by humidity,
participants applied talcum powder to their finger as needed.

Tasks
Three tasks represent standard interactions (Figure 3):

Tapping — The participant touched and released their
finger within the bounds of a target.

Crossing — The participant touched above or below a hori-
zontal line, moved their finger through the line, and released
once they had passed through. Discrete crossing was used
[1, 2, 29] as it is most similar to tap and drag. We test crossing
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through vertical targets on all compatible surfaces (top, front,
and bottom faces), which we discuss in a separate analysis.

Dragging — The participant acquired a pink line at the cen-
tre of a target by touching down within the target’s bounds.
The line was dragged by maintaining contact with the table
until a docking target was reached and the finger lifted. The
line snapped to the centre of the docking target.

The current target was green, while the other was blue. A
‘click’ or ‘beep’ sound signaled if the task was successful, or
not. Once the finger was lifted after a trial, the target colours
changed, and the next trial continued. As recommended
[5, 42, 46], a small red cursor, projected on the top face,
tracks the finger on the bottom face. Its diameter is 3 mm
when the finger contacts the table, but becomes larger and
more transparent as the finger is lifted.
For each task, the target width and distance was exper-

imentally controlled. The participant completed a set of 5
reciprocal task trials (back-and-forth between two targets),
using the same width and distance. We use one-dimensional
tasks since the top ridge, front face, and bottom ridge are
not large enough to support two-dimensional tasks.

‘False’ errors could occur if marker tracking is momentar-
ily lost. To mitigate this, we define a 2 cm region on both
sides of the target, and consider any errors detected outside
this range to be caused by a motion tracking error. An error
sound is played, and the participant must restart the trial.
Errors inside the 2 cm region around the target are counted
as ‘true’ errors and are used for the error rate metric. Note 2
cm is the width of the largest target we test.

Procedure
Each participant used all surfaces for each task. Before each
combination of a specific task and surface, they completed
a practice block containing a set of the easiest and most
difficult combinations of target distance and width.
After, they completed five sets of trials, each set a single

combination of target distance and width. This was done
thrice to create three blocks of sets for a surface, and the pro-
cess repeated for all surfaces. After each set, the participant
pressed a large ‘continue’ button rendered 15 cm from the
back of the top face. This provided a place to take a break.

The task changed once all surfaces were used for the cur-
rent task. At this time, the participant ranked the five sur-
faces for ease of use, ease of learning, comfort, and overall
preference. The study lasted approximately 1 hour.

Design
This is a within-subjects design with two primary indepen-
dent variables: task with 3 levels (tap, cross, drag); and
surface with 5 levels (t-face, t-ridge, f-face, b-ridge, b-
face). block and id are secondary independent variables,

(a) Tapping

(b) Crossing

(c) Dragging

Figure 3: Targets for the top face, top ridge, and front face.

where id is the index of difficulty described in Fitts’ law [36].
There were 5 id variations for each task, and every id was
calculated using a target width (W) and distance (D) (W =
20 mm, 18 mm, 15 mm, 13 mm, 10 mm; D = 100 mm, 175
mm, 250 mm, 325 mm, 400 mm; ID = 2.58, 3.46, 4.14, 4.75,
5.36). Each id variation was presented in random order. We
selected these W and D values as id should be between 2
and 8 [36], W should be large enough to see and touch, and
D should not exceed the length of the table.
The order for task was counter-balanced using a 3 × 3

Latin square. For crossing, the vertical and horizontal orien-
tations occurred one after another using a random ordering.
The primary measures are Selection Time and Error Rate.

Selection Time is the time from the previous target selection
until the current target selection. Error Rate is the proportion
of trials that had one or more task errors. There are also 12
subjective rankings. Excluding the extra horizontal crossing
condition, there are: 3 tasks × 5 surfaces × 3 blocks × 5
ids × 5 repetitions = 1125 data points per participant.

Results
For every combination of task, surface, and block, trial
times more than 3 standard deviations from the mean were
excluded as outliers. An additional 8 trials were excluded due
to tracking errors. Overall, 218 trials (1.3%) were removed.

An implementation bug caused some crossing trials to be
falsely categorized as errors. During the experiment, target
intersections were tested using a series of points. This is
correct for detecting a point inside a tapping or dragging
target, but fast movements sometimes passed through thin
crossing targets without detection. To correct this, trials
are retroactively marked successful if any line segments
in the series of contact points intersect a crossing target.
This corrected 1,903 false error trials (26% of crossing trials).
Participants heard a warning sound when a valid cross was
falsely detected as an error, which may have influenced task
preference rankings. Because we are primarily focused on
comparing surfaces, this is an acceptable limitation.
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Analysis Methods. In the analysis, a surface × task × block
ANOVA with Tukey HSD post hoc tests was used, unless
noted. When sphericity was violated, degrees of freedom
were corrected using Greenhouse-Geisser (ϵ < 0.75) or
Huynh-Feldt (ϵ ≥ 0.75). As residuals for Selection Time were
not normally distributed, log transformed values were used.
For readability, we use short surface names in figures and
tables: TF = t-face, TR = t-ridge, FF = f-face, BR = b-ridge,
and BF = b-face. Error bars in all graphs are 95% confidence.

Learning Effect. We are interested in practised performance,
so we examine if earlier blocks took longer and should be
removed (as recommended for Fitts’ studies [36]). There
is a small, but significant effect of block on Selection Time
(F2,28 = 42.28,p < .001, η2G = .02), but no interactions involving
block. Post hoc tests found block 3 faster than block 1
(p < .001) and block 2 (p < .01). The time difference between
block 2 and 3 is small, only 30ms (2.5%).

We noticed participants switching to optimal postures or
movement strategies as the experiment progressed. Given
this, and the significant difference, we use block 3 data in
all subsequent analysis to be more representative of prac-
tised performance. Analysis using more blocks yields similar
results, and any differences are noted in our discussion.

Selection Time. Considering all tasks together, using the top
ridge is fastest. A significant main effect of surface on Se-
lection Time (F4,56 = 34.56, p < .001, η2G = .27) with post hoc
tests reveals differences between all surfaces (all p < .05): t-
ridge (990ms) is fastest, followed by t-face (1039ms), f-face
(1137ms), b-ridge (1172ms), and b-face (1311ms).

When considering specific tasks, the top ridge is always
one of the fastest surfaces. There is a significant interaction
effect involving task and surface on Selection Time (F8,112 =
8.32, p < .001, η2G = .12). Post hoc tests examine differences
between each surface, for every task (Figure 4):
• For tap, there is no significant difference between t-face
and t-ridge. Other differences are significant (all p < .001).
t-face (692ms) and t-ridge (710ms) are faster than f-face
(768ms), b-ridge (958ms), and b-face (1075ms).

• For cross, there is no significant difference between t-
face and f-face, but other differences are significant (all
p < .01). t-ridge (821ms) is fastest (19% faster than t-face),
followed by b-ridge (902ms) (11% faster than t-face), f-
face (981ms) and t-face (1013ms), and b-face (1150ms).

• For drag, there is no significant difference between b-face,
f-face, and b-ridge, or t-face and t-ridge, but all other
differences are significant (all p < .001). t-face (1409ms)
and t-ridge (1434ms) are fastest and b-ridge (1658ms),
f-face (1685ms) and b-face (1708ms) are slowest.
In addition, post hoc tests between task, for every sur-

face find tapping is always the fastest task, except for the

Figure 4: Selection Time (ms) by task for each surface

Figure 5: Error Rate (%) by task for each surface

bottom ridge, where crossing is fastest. For all surfaces, there
is a significant difference between all tasks (all p < .001), ex-
cept between tap and cross for b-ridge which is borderline
(p = .04). tap is the fastest across surfaces, except for b-ridge,
where cross (902ms) is faster than tap (958ms).

Error Rate. Considering all tasks, top face and top ridge are
less error prone than the bottom face. A significant main
effect of surface on Error Rate (F4,56 = 5.16, p < .01, η2G = .07)
with post hoc tests reveals significant differences between
t-ridge and b-face, and t-face and b-face (both p < .05).
Overall, t-face and t-ridge, f-face and b-ridge, and b-face
have average error rates of 4%, 6%, and 8%, respectively.

Surface does not affect error rates when crossing or drag-
ging (Figure 5). There is a significant interaction between
task and surface (F8,112 = 4.21, p < .001, η2G = .12) on Error
Rate. Post hoc tests reveal differences between each task,
across every surface. For tap, there are differences between
t-ridge (3%) and b-ridge (11%) (p < 0.05); t-ridge and b-
face (15%) (p < .001); and t-face (7%) and b-face (p < .05).
For cross and drag, there are no significant differences.
Error rate is consistent across tasks the for top ridge and

front face. Post hoc tests reveal differences in Error Rate
between tap and cross for t-face, b-ridge (both p < 0.05),
and b-face (p < .001). There is a difference between tap and
drag for t-face (p < .05), b-ridge and b-face (both p < .001).

Preference Scores. After completing a single task, partici-
pants ranked surfaces from best to worst for ease of use,
ease of learning, comfort, and overall preference. Ties are
allowed. We assign a Condorcet rank [50] to each condition.
A condition ranked first is the condition that defeats all oth-
ers in pairwise comparisons (Condorcet winner), while the
condition ranked second defeats all others save the rank one
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Table 1: Condorcet preference rankings

EoU EoL Comfort Overall

T C D T C D T C D T C D

TF 1 2 1 1 3 1 1 2 1 1 4 2
TR 2 1 2 2 1 1 2 1 2 2 1 1
FF 3 3 3 3 2 2 4 4 4 4 3 4
BR 4 2 4 4 1 4 4 2 5 5 2 5
BF 5 4 3 5 4 3 3 3 3 3 5 3

condition, and so on. A Condorcet winner or strict ordering
may not exist. If an ordering exists, each condition strictly
dominates the others in preference. As strict ordering is not
important, we allow for equal Condorcet rankings.
Table 1 presents all Condorcet rankings, where T, C, and

D represent tap, cross, and drag; and EoU and EoL repre-
sent ease of use and ease of learning, respectively. The top
face and top ridge are consistently highly ranked across all
measures whereas the other surfaces are ranked lower. The
bottom ridge is only highly ranked (1 or 2) for crossing.

Crossing Orientation
The main study focused on the horizontal target orientation
(vertical crossing), but we also gathered data for vertical
crossing targets (horizontal crossing) with the compatible
top, front, and bottom faces. For this analysis we define
a 3-level factor surface∗ for the three surfaces, and a 2-
level factor crosstype∗, defined by crossing type rather than
target orientation: vert and horz.

Overall, vertical crossing is significantly faster than hori-
zontal crossing. A significant main effect of crosstype∗ on
Selection Time with post hoc tests reveals vert (1048ms) is
significantly faster than horz (1151ms), which differs from
Luo and Vogel’s previous results [29]. This may be due to
differences in surface orientation or texture.
Overall, front face is fastest. A main effect of surface∗

on Selection Time (F2,28 = 6.68, p < .01, η2G = .07) and post
hoc tests show differences between all surfaces (all p < .05).
f-face (1037ms) is faster than t-face (1087ms) and b-face
(1173ms). There are no interaction effects.

Homing Time
Our experiment was not designed to measure the time spent
moving from a primary input device, like a keyboard, to an
edge surface. However, we can estimate this Homing Time
measure using the time span between pressing the ‘continue’
button (rendered 15 cm from the back of the top face) and
the event starting (or ending) each set of trials.

After removing 212 outliers (2.5%), we find top face hom-
ing time is only 150ms less than top ridge or front face. A
significant main effect of surface (F4,56 = 35.34, p < .001,
η2G = .20) with post hoc tests shows t-face is fastest (1176ms),

Table 2: Min. target width (mm) & throughput (bits/s)

Min. Width (mm) Throughput (bits/s)

Tap Cross Drag Tap Cross Drag

TF 12.5 10.0 12.8 6.30 7.54 3.60
TR 10.9 8.3 15.1 7.15 8.68 2.37
FF 16.6 7.4 19.2 5.92 7.35 2.37
BR 15.9 10.4 15.2 4.09 7.75 3.01
BF 14.9 8.3 13.4 4.34 6.45 3.05

followed by t-ridge (1327ms) and f-face (1325ms), and b-
ridge (1475ms) and b-face (1442ms) (all p < .001).

These times are slower than the keyboard-to-mouse hom-
ing factor, H (400ms), in the keystroke-level model [9]. This
is likely due to a reaction time when our participants located
the first task target in a set, or realize the set ended.

Effective Width and Fitts’ Modelling
The distance between the centre of the target and the partic-
ipant’s contact point is recorded for every trial, and we cal-
culate the effective target width by multiplying the standard
deviation of these distances by 4.133. To make recommenda-
tions for minimum target width [36], we examine the average
effective widths using the smallest target size (10 mm) for
every task and surface. Results (Table 2) show crossing and
dragging targets on the front face have the smallest (7.4 mm)
and largest (19.2 mm) minimum target widths, respectively.

Given the high tapping error rates, we use IDe , the effec-
tive index of difficulty [36], to model average speed using
Fitts’ law. Fitts’ law has strong predictive power for all table
edge surfaces: all 15 combinations of task and surface are
modelled well, with all fitness values above 90% (Table 3).
All models except t-ridge dragging (-75) have positive in-
tercepts. t-face and b-ridge have the lowest tap intercepts.
For crossing, the intercepts for all edge surfaces are less than
those for the top and bottom faces. t-ridge (-75) and f-face
(235) have the lowest intercepts for drag.

The inverse of b gives average throughput [36]. For every
surface, cross and drag have the highest and lowest through-
put, respectively (Table 2). t-ridge produces the highest
throughput for tap (7.15 bits/s) and cross (8.68 bits/s), and
t-face gives higher throughput for drag (3.60 bits/s).

Discussion
While the top ridge is consistently fast with low error rates
and high subjective ratings, the bottom ridge is only fast and
preferred for crossing. All three edge surfaces have crossing
error rates below 6%. Crossing minimum target widths are
smaller than those for tapping and dragging across all edge
surfaces. Given these results, the top ridge may be the best
surface for interaction techniques, and crossing tasks may
generally be better suited for edge-of-table interactions.
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Table 3: Fitts’ model parameters

Tap Cross Drag

a b R2 a b R2 a b R2

TF 76 159 0.95 444 133 0.97 322 278 0.98
TR 145 140 0.99 322 115 0.96 -75 421 0.94
FF 122 169 0.91 384 136 0.98 235 423 0.92
BR 14 245 0.98 372 129 0.98 388 332 0.95
BF 262 231 1.00 507 155 1.00 414 328 0.98

Learning Effect. There are many factors that could have influ-
enced learning. The crossing and dragging tasks may have
been more difficult for participants to understand, since they
required participants to touch the table, move their finger
while maintaining contact, and release once they had passed
through or reached the target. As participants were not told
to use a particular hand posture or position, it is possible
they took time to explore optimal strategies for each task.
Recall our analysis only uses block 3 due to a significant

learning effect. Using more blocks for analysis reveals more
details about the learning effect. Analysis with blocks 2 and
3 yields the same results with one exception: for tap, there is
a 37ms difference in Selection Time between t-face (699ms)
and t-ridge (736ms) (p < .01). Using all three blocks yields
one more minor difference: for drag, t-face (1433ms) is
70ms faster than t-ridge (1503ms) (p < .05). This suggests
participants were learning more efficient methods of tapping
and dragging with t-ridge during the first two blocks.

Preferences and Strategies for Touch Input. It is possible par-
ticipants took time to explore optimal strategies for each
task. For example, some participants positioned their fingers
horizontally (P4, P5) and others rotated their chairs (P9) to
interact with top ridge targets from the side. Some partici-
pants (P9, P12) crossed through top ridge targets by carefully
maintaining contact with the top and front faces. Others
‘flicked’ through the top ridge upward (P3). With practice,
most participants ‘flicked’ top ridge crossing targets in a
downward motion in block 3, suggesting this is a preferred
crossing strategy for index finger input.
The front and bottom faces are never preferred. Some

participants (P2, P5, P6, P9) felt the front face was placed
in a strange position, as lifting required them to move their
entire arm rather than just their finger or wrist. Others (P2,
P4, P9, P14) felt the bottom ridge and face were awkward
due to poor hand or body positioning. P2 and P5 felt it was
strange to lower their fingers after making contact with the
table as they associated ‘lifting’ with an upward movement.
P2 and P6 liked positioning their hands palm-up.
The bottom face was the slowest for all tasks, and more

error prone than the top face for tapping tasks. The differ-
ence in tapping error rate reinforces Wigdor et al.’s results

[43]. For tap and cross, all three edge surfaces are faster than
the bottom face. For drag, the top ridge is the only edge
surface that outperforms the bottom face. While some par-
ticipants (P6, P8, P9) enjoyed seeing a cursor follow their
finger movements, P2 and P4 felt it was disorienting.
Participants tried several hand postures and techniques

for each task, so it seems there is an opportunity for dif-
ferent postures and perhaps using different fingers [22]. As
the top and bottom ridges had the highest rankings, fastest
times, and low errors (< 6%) for crossing, we explore cross-
ing variations using the thumb along these two surfaces in
a follow-up study. We include tapping to perform baseline
comparisons. Participants’ feedback on front face interac-
tion was valuable. We try to improve front face interaction
in the same follow-up study by introducing a “braced” hand
posture [13] with less arm movement and occlusion.

5 EXPERIMENT 2 - USING A BRACED THUMB
We try to improve front face interaction using a “braced”
touch posture, and explore how this posture affects task
performance along the top and bottom ridges.

Participants and Procedure
We recruited 8 participants, ages 22 to 42 (µ = 28, σ = 4.13), 2
were female, 6 were male, and 1 was left-handed. All reported
experience using touchscreen devices. Remuneration was $5.
The same prototyping system as Experiment 1 was used.

The tasks, tapping and crossing, were the same as those
used in Experiment 1. However, instead of using the index
finger, the participant used their thumb. We explore thumb
input since it was suggested by Cockburn et al. [12, 13] and
data on minimum target width for thumb input would give
more options for designers. As a variation on Cockburn
et al.’s “braced” posture, other fingers were placed under-
neath the table to provide additional stability and minimize
occlusion. Note our results from Experiment 1 suggest brac-
ing from below is optimal, since the bottom face is less likely
to be used for touch input due to its poor performance. The
experimental procedure was identical to that of Experiment
1, except only two tasks were performed using three edge
surfaces. The study lasted 20 minutes.

Design
This is a within-subjects design with two primary indepen-
dent variables: task with 2 levels (tap, cross) and surface
with 3 levels (t-ridge, f-face, b-ridge). block and id are
secondary independent variables, with 3 and 5 levels respec-
tively. All target widths and distances are the same as those
used in Experiment 1. Each id variation was presented in
random order. There were 3 blocks per combination of task
and surface, and the order for task was counter-balanced.
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Figure 6: Selection Time (ms) by task for each surface

Figure 7: Error Rate (%) by task for each surface

Primary measures include Selection Time and Error Rate.
Selection Time is the time from the previous target selection
until the current target selection, and Error Rate is the pro-
portion of trials with task errors. There are also 8 subjective
rankings. In total, there are: 2 tasks × 3 surfaces × 3 blocks
× 5 ids × 5 repetitions = 450 data points per participant.

Results
For every combination of task, surface, and block, trial
times more than 3 standard deviations from the mean were
excluded as outliers. In total, 62 trials (1.9%) were removed.
As was done in the previous study, we retroactively mark
any crossing trial as successful if any line segments formed
by the series of generated contact points intersects with the
targets. A total of 310 crossing trials (19%) were corrected.

Learning Effect. There is a significant main effect of block
on Selection Time (F2,16 = 21.35, p < .001, η2G = .04), but no
interaction effects. Post hoc tests found block 1 and block 2
are significantly slower than block 3 (both p < .01), though
the difference between blocks 2 and 3 is small (42ms). We
use block 3 data for all subsequent analysis.

Selection Time. Considering all tasks, top ridge is faster than
the front face and bottom ridge. There is a main effect of
surface on Selection Time (F2,16 = 43.16, p < .001, η2G = .43),
with post hoc tests showing significant differences between
all three surfaces (all p < .001). Overall, t-ridge (879ms) is
faster than f-face (1029ms) and b-ridge (1344ms). There are
no interaction effects on Selection Time (Figure 6).

Error Rate. Considering all surfaces, crossing is less error
prone than tapping. There is a significant main effect of
task on Error Rate (F1,8 = 5.66, p < .05, η2G = .19), where cross

Table 4: Min. target width (mm) & throughput (bits/s)

Min. Width (mm) Throughput (bits/s)

Tap Cross Tap Cross

TR 10.1 7.4 3.84 5.73
FF 14.5 13.0 4.47 5.98
BR 15.5 13.6 4.90 4.71

(5%) is less error prone than tap (12%). There are no other
main effects nor any interaction effects (Figure 7).

Preference Scores. After completing a single task, partici-
pants ranked each surface from best to worst using the same
criteria as Experiment 1. We assign a Condorcet ranking to
each condition. For both tasks, the rankings (t-ridge, f-face,
b-ridge) are mostly identical across all four measures, with
the exception of ease of learning for cross, where f-face
and t-ridge are both ranked first.

Effective Width and Fitts’ Modelling
Results (Table 4) show effective target widths for crossing
are smaller than those for tapping. t-ridge crossing targets
and b-ridge tapping targets have the smallest (7.4 mm) and
largest (15.5 mm) minimum target widths, respectively.
IDe has strong predictive power for the top ridge and front

face, where R2 > 0.9 (Table 5), but is not as strong for the
bottom ridge (R2 > 0.8). t-ridge has a negative intercept
for tap (-115), and the lowest intercept for cross (124). Tap
has lower intercepts than cross for t-ridge and f-face, but
the intercept is lower for cross with b-ridge. b-ridge and
f-face have the highest throughputs for tap (4.90 bits/s)
and cross (5.98 bits/s), respectively. For t-ridge and f-face,
throughput is higher for cross than tap.

Comparing Thumb to Index Finger
In Experiment 1, participants used their index finger to in-
teract with targets. In Experiment 2, participants used their
thumb and rested their other fingers underneath the table
to stabilize arm movements [13] and minimize occlusion. To
compare postures, we define a 3-level factor surface∗ for
the three edge surfaces (t-ridge, f-face, b-ridge), a 2-level
factor task∗ (tap, cross), and a new, 2-level factor posture
(pointing, braced). We use the same analysis methods as
before, however, we use a mixed-factorial ANOVA where
posture is a between-subjects factor and task and surface
are repeated measures.

Index finger input is always faster than braced touch, with
the difference as low as 77ms for crossing on the top ridge to
478ms for tapping on the bottom ridge. A significant main
effect of posture on Selection Time (F1,22 = 13.67, p < .001,
η2G = .22) with post hoc tests shows pointing (857ms) is
faster than braced (1084ms). There is also an interaction
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Table 5: Fitts’ model parameters

Tap Cross

a b R2 a b R2

TR -115 260 0.95 124 175 0.96
FF 123 224 0.93 421 167 0.95
BR 733 204 0.83 419 212 0.86

between posture and surface (F2,44 = 5.66, p < .001, η2G =
.05). Post hoc tests show pointing is always faster than
braced (all p < .001). For tap, braced is 168ms (24%), 186ms
(24%), and 478ms (50%) slower than pointing for t-ridge,
f-face, and b-ridge, respectively. For cross, it is 77ms (9%),
124ms (13%), and 354ms (40%) slower than pointing for t-
ridge, f-face, and b-ridge, respectively. This is similar to
Cockburn et al.’s results for the “static” condition [13].
Index finger input is less error prone than braced touch.

Considering all tasks and surfaces, a significant main effect
of posture on Error Rate (F1,22 = 6.65, p < .05, η2G = .04)
shows pointing (6%) is less error prone than braced (8%).
There are no interaction effects involving posture. For tap,
braced is 7%, 2%, and 5% more error prone than pointing
for t-ridge, f-face, and b-ridge, respectively. For cross, it
is 1% more error prone than pointing for all edge surfaces.
Minimum target widths for tapping are always smaller

using the thumb. For the front face, the difference in target
width is over 2 mm. Crossing widths are smaller with in-
dex finger interaction, with the exception of crossing on the
top ridge. Index finger input yields higher tapping through-
put for the front face and top ridge. Tapping on the bottom
ridge yields higher throughput with thumb input. Crossing
throughput is always better using the index finger.

Discussion
For both tasks, top ridge and bottom ridge are the fastest
and slowest surfaces, respectively. Cross is less error prone
than tap across all surfaces. A pointing posture may be bet-
ter suited for edge-of-table interactions. While the braced
touch posture is slower, the difference in error rate is small
for crossing. This posture could still be used for infrequent
crossing actions.

Preferences and Strategies for Touch Input. Most participants
(P1, P2, P3, P5, P6) agreed the braced posture was awkward
for bottom ridge interactions. P1 felt it was difficult to reach
targets on her non-dominant-hand side, as she had to cross
her arm over her body. Others (P2, P6) re-positioned the chair
to reach these targets. Braced touch interactions should be
performed along the user’s dominant hand-side.
While we introduced a braced posture to stabilize arm

movement, some participants (P1, P6) felt the posture was
tiring along the front face as well due to awkward wrist

placement. Participants may have experienced discomfort
from trying to maintain contact with the bottom face using
the entire hand. Others may not have adjusted wrist rotation
based on target location. Braced interactions may be more
comfortable if the wrist-forearm angle is minimized.

6 GENERAL DISCUSSION
We rephrase the most relevant results as design recommenda-
tions, discuss example applications for table edge interaction,
and finally, discuss possible limitations in our methods.

Design Recommendations
Hand Postures. A pointing posture should always be priori-
tized over a braced hand posture due to its faster speeds and
lower error rates. A braced hand posture could be used to
trigger infrequent commands that do not require speed. If a
braced hand posture is to be used, user interfaces should be
placed along the user’s dominant-hand side to minimize arm
and wrist discomfort. A braced hand posture should only be
used along the top ridge and front face for crossing tasks;
the bottom ridge performs too poorly to justify its use.

Tasks and Surfaces. The top ridge is fast with low error rates,
and is a good candidate for tapping, crossing, and dragging.
Interaction along the top ridge should always be prioritized.
The front face can support all three tasks, but due to slower
speeds and physical discomfort, should not be used as often.
Interactions along the front face should minimize arm and
wrist movement. As top ridge and front face error rates are
consistent across tasks, we recommend tapping tasks to be
prioritized, as they are faster. Crossing is a comparable alter-
native. Dragging should be used when speed is not necessary.
The bottom ridge should only be used for crossing tasks.

Minimum Target Size. For a braced thumb tap, targets should
be at least 10.1 mm wide for top ridge and 14.5 mm wide for
front face. Crossing targets should be 7.4 mm or 13 mm wide
for top ridge and front face, respectively. With a pointing
posture, top ridge targets should be at least 10.9 mm, 8.3 mm,
and 15.1 mm wide for tap, cross, and drag. Targets placed
along the front face should be at least 16.6 mm, 7.4 mm, and
19.2 mm wide for tap, cross, and drag. Bottom ridge crossing
targets should at least 10.4 mm wide.

Example Applications
Notification Tray —The front face becomes a notification tray
for emails, tweets, weather updates, and meeting reminders.
Different edge interactions can: adjust notification settings
like “snooze” time; dismiss a notification; access shortcut
actions such as “liking” a tweet or sending a “canned” email
reply; and viewing notification details on a computer or
nearby wall display using SAR (Figure 8).
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(a) (c)(b) (d)

Figure 8: Example edge-of-table notification application: (a) drag along top ridge to configure notification snooze time; (b) cross

bottom ridge to dismiss a notification; (c) braced thumb tap on front face to reveal shortcut actions like email quick replies,

actions are selected using tap on top ridge; (d) cross top ridge to view notification details on desktop or nearby wall.

Smart Home Control — The table edge becomes a menu to
adjust smart home functions, like heating, lights, security,
and media. Available functions appear along the top ridge
and crossing through an item selects it. Sliders, toggles, and
buttons appear on the front face for users to adjust settings.

Limitations
Touch Pitch and Roll. We mimic a touchscreen by using
a marker’s location to establish a single point of contact
between the table and finger. While this technique works
well for the area underneath the finger, participants may be
tempted to interact with content using the side of their finger.
This input works with touchscreens, but our system may cat-
egorize it as an error. Previous work [21] shows touch pitch
and roll distributions are similar for tap and drag. Given this,
and low cross and drag error rates, this limitation is minor.

Occlusion. Many participants from Experiment 1 agreed tar-
gets were occluded on the top face (P4, P6, P7, P9, P14, P15),
but only two participants (P4, P7) ranked it as the worst or
second worst surface for this reason. As occlusion did not
seem to affect most participants’ rankings or performance,
this is a minor issue. Multi-projector SAR systems or tables
with built-in capacitive sensing could help reduce this effect.

External Validity. We used reciprocal Fitts’ law task trials
to measure repeated touch input performance and provide
recommendations for minimum target width, a reasonable
approach for our initial exploration. While we do not believe
edge-of-table input is strictly for single actions interleaved
with a primary device, examining homing time in more detail
may provide additional insight into performance.

7 CONCLUSION AND FUTUREWORK
We explored the possibilities of touch input along the edge of
table-like surfaces. Results from a one-finger input user study
show all edge surfaces could support interaction. The top
and bottom ridges are the fastest surfaces for crossing and
all edge surfaces have error rates below 6%. Braced touch in-
put has poorer performance. Effective width analysis shows
minimum target width is 7.4 mm to 19.2 mm and 7.4 mm to
15.5 mm for the index finger and thumb, respectively.

Our work suggests new topics for future research. Our
prototyping system could be improved by using multiple
projectors to minimize target occlusion. Capacitive sensors

placed on a table could track finger position, creating a “3D
surface touchscreen.” Smaller prototyping systems, such as
those used in [33] could also be used.
Perhaps most exciting, are the many other possibilities

for edge-tailored postures and gestures. For example, multi-
touch input could be explored, such as two-finger crossing
on ridges. A subtle variation for the braced thumb posture is
resting the fingers on the top face. This may be slightly more
comfortable, but likely causes more occlusion. The thumb
and middle fingers could also brace using the top and bottom
faces simultaneously, with the free index finger used for front
face input. This simultaneous top and bottom brace could be
extended into a “grab” posture, where multi-surface thumb
and index taps, crosses, and drags work as advanced gestures
distinct from single-surface equivalents. The affordance of
a table edge naturally suggests this type of posture. Finally,
other table surfaces could be explored, such as corners and
legs. Physical properties of surfaces could be exploited: ridges
can be chamfered, rounded, or sharp, and faces can be made
in different profiles and textures. Other table-like objects
could be studied, like cupboards and window ledges.
Any unused surfaces in the environment could become

meaningful interactive displays. Our work extends the scope
of touch interaction and presents empirical evidence on the
types of edge-of-table interactions people enjoy, and are
capable of performing. We believe these results can help de-
signers and researchers create more meaningful interactions
that can be implemented and adopted in our everyday lives.
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