

MicroMentor: Peer-to-Peer Software Help Sessions in
Three Minutes or Less

Nikhita Joshi⁂†, Justin Matejka⁂, Fraser Anderson⁂, Tovi Grossman⁂‡, George Fitzmaurice⁂
⁂Autodesk Research
Toronto, ON, Canada

{first.last}@autodesk.com

†University of Waterloo
Waterloo, ON, Canada
nvjoshi@uwaterloo.ca

‡University of Toronto
Toronto, ON, Canada
tovi@dgp.toronto.edu

Figure 1. MicroMentor system enabling rapid help via short 1-on-1 help sessions.

ABSTRACT
While synchronous one-on-one help for software learning is
rich and valuable, it can be difficult to find and connect with
someone who can provide assistance. Through a formative
user study, we explore the idea of fixed-duration, one-on-one
help sessions and find that 3 minutes is often enough time for
novice users to explain their problem and receive meaningful
help from an expert. To facilitate this type of interaction, we
developed MicroMentor, an on-demand help system that
connects users via video chat for 3-minute help sessions.
MicroMentor automatically attaches relevant supplementary
materials and uses contextual information, such as command
history and expertise, to encourage the most qualified users
to accept incoming requests. These help sessions are
recorded and archived, building a bank of knowledge that
can further help a broader audience. Through a user study,
we find MicroMentor to be useful and successful in
connecting users for short teaching moments.
Author Keywords
Software learning; quick help; one-on-one help; mentoring

INTRODUCTION
Feature-rich software can be difficult to learn due to complex
user interfaces, number of tools available, and unique
vocabularies [20, 29]. Many resources are available online
such as videos and blog posts, but the best support is often
provided by other users [10]. “Over-the-shoulder” learning
(informal help between colleagues in a workplace) is one of
the most popular [41] and preferred [25, 32] learning
strategies. Directly speaking to a colleague allows for more
targeted questions, shared context [5, 41], and incidental
learning [5]. Despite its popularity, 1-on-1 learning rarely
occurs outside formal learning environments [12].

Leveraging the benefits of peer assistance, community
question and answer (CQA) sites have become popular help
seeking tools [13, 33]. StackOverflow, for example,
encourages users to ask concise questions that could be
asked to a “busy colleague” in one sentence [43]. However,
many users have trouble formulating targeted questions [10,
29]. Users often omit important background information [4,
26] and supplementary materials like screenshots [11],
making it difficult for other users to respond.

A few paid systems, like Codementor [14], mimic over-the-
shoulder learning more closely by connecting users to remote
experts who then collaborate with one another via video chat
and a shared code editor. However, there is a coordination
cost associated with finding the right helper and explaining
the problem. Even when one-on-one help is available, people
believe an expert’s time is valuable and may be reluctant to
ask for help and will even modify their working habits to
minimize the impact on the expert’s time [5]. In summary,

Submit a Help Request Answer Community Questions Connect with a Helper for 3 Minute Help Sessions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI '20, April 25–30, 2020, Honolulu, HI, USA
© 2020 Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-6708-0/20/04…$15.00
https://doi.org/10.1145/3313831.3376230

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 103 Page 1

existing remote video assistance is useful, but has a high
transaction cost which prevents its widespread adoption.

We believe there is an opportunity to better utilize one-on-
one help mechanisms outside of formal learning
environments, while minimizing the burden for both the
asker and helper. With the growth of social media, we have
become accustomed to consuming small ‘tidbits’ of
information, and with the growth of the ‘gig economy’ we
are accustomed to providing others with easy-to-access
short-term services. We believe there is a novel opportunity
to leverage these trends to support one-on-one software help
through easy-to-access micro-mentoring sessions.

In this paper, we present MicroMentor (Figure 1), an on-
demand help system that automatically connects question
askers with helpers for rapid one-on-one help sessions. The
system’s design is guided by an initial formative study,
which revealed that 3 minutes is often more than enough time
for novice users to explain their problem and receive a
meaningful answer from an expert. MicroMentor includes
several elements which facilitate the short help request,
including the addition of contextual information, and
intelligent matching of askers and helpers. Archiving the
help sessions enables future users to learn from each short
mentoring session. Through an evaluation, we find that
MicroMentor is useful in solving many questions, and may
be comparable to in-person, expert assistance. Our work
makes the following three contributions:

1) A formative study revealing challenges and opportunities
of using micro-help sessions for software learning.

2) The development of MicroMentor, a novel system that
minimizes the transaction cost of remote 1-1 help through
automatic recruitment and time-constrained sessions.

3) An empirical evaluation showing the promise of
MicroMentor and revealing insights and guidance for
future software learning research.

BACKGROUND AND RELATED WORK
Our work builds upon help seeking behaviours and systems,
and behavioural theory.

Help Seeking Behaviours
Previous work highlights the challenges users face when
accessing help resources. Often, users do not understand
application-specific vocabulary [16] making it difficult for
users to form relevant search queries [10, 29]. Explaining
specific problems in plain language [1, 10], within the target
application [33] may help users form meaningful questions.
Kiani et al. [29] study software newcomers’ help seeking
behaviours, and note that most participants preferred videos
and some expressed a need for shorter videos. Video archives
generated from quick help sessions may address this issue.

Remote video assistance is a common approach for
providing technical support [17]. However, Chilana et al.’s
study of product support practices [11] found that support
specialists had mixed feelings about screen sharing. The
advantage of sharing screens was that it maximized “shared

understanding” [17]. The main drawback reported by
specialists was that sharing sessions took too much of their
time. With MicroMentor, we look to leverage the benefits of
video screen-sharing, while mitigating this transaction cost.

The best support is often provided by members of the
community [10]. CQA sites have become popular in recent
years. However, remote helpers have little background
knowledge of the asker’s problem, necessitating askers to
include the right contextual information [10]. A lack of
background information may cause posts to go unanswered
[4] or prompt clarification requests [26] that take time to
answer. Automatically capturing and attaching
supplementary content may mitigate these challenges.

When possible, people often prefer asking their colleagues
directly for help [25, 32]. “Over-the-shoulder” learning
between colleagues in the workplace, is one of the most
popular help seeking strategies [41] and offers many
benefits. It is convenient to initiate in the moment, provides
rich shared context, and allows for more targeted queries and
follow-up questions [5, 41]. Directly observing a helper’s
actions results in more incidental learning as conversations
can shift and span many domains [5].

One-on-one help is rarely available outside the workplace
[12]. Even when it is available, people are reluctant to use it.
Finding the right helper and coordinating a meeting time may
be challenging [10]. People may feel embarrassed to ask
questions or reluctant to disturb other people [41]. Berlin and
Jeffries [5] found mentees made an effort to minimize their
impact on a mentor’s time. They spent time narrowing the
problem space before going to the mentor, sent emails to be
less intrusive, and began working on other tasks when they
got stuck; building a set of questions to ask their mentor at a
later time. Our goal is to support short help sessions which
may be less of a burden on the helper’s time and reduce the
asker’s feelings of guilt when requesting help.

Systems for Seeking Help
Numerous interactive systems have been developed in the
HCI literature to address the aforementioned challenges.
Codementor [14] connects developers for long term
mentoring or one-off help sessions. The asker submits a
request, selects a helper, and schedules a meeting time. The
asker and helper collaborate with one another using a shared
code editor. If the helper does not provide a good solution,
the asker must find and schedule time with another helper.
MicroMentor lowers the transaction cost by automating the
helper selection process and the resubmission of requests.

Previous systems have focused on providing additional
context when asking questions. Codeon [9] allows
developers to describe their problem in plain language within
their IDE and automatically attaches relevant code context to
help requests. LemonAid [13] users can ask for help by
selecting UI widgets of interest. IP-QAT [33] encourages
askers to submit relevant commands and screenshots.
MicroMentor encourages askers to submit screen recordings,

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 103 Page 2

allowing the user to highlight areas of interest using their
cursor and describe problems in plain language.

Some systems have focused on routing questions to online
experts capable of responding [24, 36] which can improve
response times [40]. Answer Garden [1, 2] stores previously
answered questions, and routes unanswered questions to
experts. This ensures experts are answering useful questions
over duplicates. Real-time collaborative tools [18, 21] can
facilitate shared learning and work, and teaching
opportunities between peers. MicroMentor could be used to
promote collaborative learning and shared work, but we
focus on teaching opportunities.

Behavioural Theory
Carroll’s work [7] suggests a minimalist approach to
instruction may be more effective and notes the mental costs
of acquiring, reading, and organizing written information.
His “Paradox of the Active User” [8] describes a production
bias, where users are motivated by throughput and are likely
to use known, but inefficient methods to accomplish a task
over learning new approaches. As such, many of today’s help
systems have been designed to minimize the transaction cost
of learning new content by providing help in context [3, 30]
and presenting information in small chunks. For example,
early research showed limitations of long video tutorials [22,
39] while short contextual videos can be effective [19].

An important example of reducing transaction costs is the
recent phenomena of micro-blogging. Most notably, Twitter
is a popular social media system which enforces a 280-
character count (originally 140 characters) for all posts. Jave
et al. discussed how such enforced constraints may have
resulted in the platform’s immediate growth [28]:

“Microblogging fulfills a need for an even faster mode of
communication. By encouraging shorter posts, it lowers users’
requirement of time and thought investment for content generation”

This idea has support within the HCI community, with
researchers advocating for all requests to be made through
constrained communication channels to facilitate concise
requests and lower the expectation of a lengthy response
[44]. MicroMentor builds on this idea of length constraints
by enforcing a 3-minute time interval on 1-1 help sessions.

Many theories on ambiguity and risk aversion, like the
Ellsberg paradox [15], state people prefer to bet on specific,
known odds over ambiguous probabilities, even when the
known odds are low [6]. Simply knowing more information
can have a positive impact, especially when it involves time.
As stated by Maria Konnikova in The New Yorker [31]:

“The more we know about something—including precisely how
much time it will consume—the greater the chance we will
commit to it.”

To-do lists with time estimates [42] can help overcome
procrastination. Many written articles include estimated read
times [37] to increase engagement [23]. We believe there is
a unique opportunity here; traditional one-on-one help has no

definite end time, and ambiguous durations may deter
experts from helping their peers.

MicroMentor is inspired by the strengths and weaknesses of
different help seeking strategies and systems. Previous
systems have attempted to improve submitting a request,
receiving a response, and accessing it later. MicroMentor
addresses similar issues, but focuses on synchronous, one-
on-one help. We design MicroMentor with quick help in
mind and use this idea to drive design decisions.

FORMATIVE STUDY – UNDERSTANDING QUICK HELP
A formative study was conducted to better understand the
effectiveness, opportunities and challenges of rapid one-on-
one software help sessions. In particular, the study was
designed to explore the effects an enforced time-limit on help
sessions would have on the outcome and experience of the
asker and helper. We tested 1-minute and 3-minute help
sessions and compared these timed conditions to a baseline
with no time constraints. One minute is enough time for users
to perform simple tasks and 3 minutes reflects the average
duration of most website visits [45]. In the study, the askers
were attempting to complete a task within Fusion 360, a
complex 3D design software application. Help sessions were
conducted in-person, as our goal was to understand the
impact of duration on the best-case learning scenario.

Participants and Apparatus
We recruited 6 participants. Three helpers were Fusion 360
experts, ages 22 to 30 (M = 27, SD = 4.6). All helpers were
male and reported using Fusion 360 often in their work.
Three askers, ages 26 to 32 (M = 30, SD = 3.5) self-identified
as Fusion 360 novices. Two askers were male, 1 was female.
Remuneration was a $50 gift card. All askers worked at a
desk with a laptop and mouse in an individual room while all
helpers sat in a common waiting area.

Procedure
The study took place in a single group session with all 6
participants at the same time. Askers were told to design a
car in Fusion 360 and that they could call for a helper when
they had questions. Each asker was provided a collection of
car images for inspiration, but not a specific task or workflow
they needed to follow to encourage a variety of questions.

Calling for help was the askers’ only means of assistance
(they could not look for help resources in the software, or on
the internet). However, once a helper was present, they could
use other help resources if necessary. We instructed askers
to try to ask no fewer than 9 questions, and up to 18 questions
(1 question every 5 minutes). This would allow every asker
to interact with every helper for all 3 time limit conditions (1
minute, 3 minutes, no time limit). A facilitator encouraged
askers to think of a question they could ask a helper if several
minutes passed since their last question.

When the asker wanted to ask a question, a facilitator
assigned a helper and time limit to the asker, using a
predetermined randomized order. If the assigned helper was
busy assisting another asker, another helper/time limit

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 103 Page 3

combination was selected based on the next available helper
in the list. The helper would then enter the asker’s room, and
a timer recorded the time it took the asker to ask their
question and receive assistance. To better capture the time
needed to receive help, we told the askers to dismiss the
helpers once their question was answered, or the helpers
were dismissed by the facilitator once the allocated time had
elapsed. After each help session, we asked both parties to
complete short questionnaires about their experience,
including if they thought the question had been answered.
The entire session lasted 90 minutes. We then conducted
semi-structured interviews with each participant.

Results

Help Session Durations
Overall, 37 questions were asked in total (Figure 2). The
shortest session was 17s and the longest was over 15m
(902s). The average session was just over 2m (138s), and it
took askers 16s on average to ask their question.

Figure 2. Question times in the formative study, many were
successfully answered (rated 4 or 5) in 1 and 3 minutes.

Of the 37 questions, 13 were assigned a 1-minute time limit,
twelve were assigned a 3-minute interval, and twelve
questions had no time limit. For the 1-minute interval, the
shortest session was 17s, and the average was 57s. Only 2/13
(15%) sessions were successfully answered under 60s. For
the 3-minutes time limit, the shortest help session was 64s
and the average was a little over 2 minutes (136s). Over two-
thirds of the questions (8/12, 67%) were successfully
answered in less than 3 minutes. For the questions with no
time-limits, the shortest help session was 28s, the longest
was 902s, and the average help session was slightly under 4
minutes (228s). Questions that were considered to have been
answered (asker gave a rating of 4 or 5) in the no time-limit
condition were answered under 3 minutes (166s) on average.

Stress

Figure 3. Reported stress levels for each time limit, note that
3 minutes has only slightly higher stress than no limit.

After every help request, askers and helpers indicated their
level of stress on a 5-point Likert scale (Figure 3). Only 19%
of all responses indicated no feelings of stress for the 1-

minute condition, but this number is much higher for the 3-
minutes (50%) and no time limit (71%) conditions.
Understanding the Question
Helpers indicated how well they understood the question
after every help session using a 5-point Likert scale. Overall,
helpers felt they understood all but 2 questions (95%).
Succesfully Answered Questions
After every help session, askers indicated whether the
question was answered successfully. Askers felt questions
were answered 92% of the time with no time limit, and 83%
with 3 minutes. With 1 minute, askers felt their questions
were answered only 39% of the time (Figure 4).

Figure 4: Responses to whether or not the asker felt their
questions were successfully answered.

Interviews

Asking a Question
A few participants noted using different strategies for each
time limit. With limited time, there was more pressure to ask
focused, targeted questions with little elaboration, which was
challenging. However, helpers appreciated and preferred
these concise questions over longer questions. With no time
limit, askers framed their help requests as discussions about
a problem, but noted the inefficiencies of too many side
conversations and follow-up questions. Helpers often asked
clarifying questions. When there was only 1 minute,
clarifying often took too much time, leaving little time for a
response. Non-verbal cues, like pointing and making hand
gestures, were useful when describing a problem or
clarifying. For all three conditions, helpers overall felt they
understood the questions, which may in part, be due to non-
verbal cues. Many participants felt 3 minutes was optimal;
there was enough time to ask a question while providing
details, clarify, and receive a focused response.
Receiving Help
Like the askers, the helpers used different strategies when
giving help. With 1 minute, helpers felt there was no time to
fully walk through a solution and instead help was framed as
concise, step-by-step instructions. When there were multiple
ways to solve a problem, helpers often optimized for time by
showing only one, often the easiest, way to solve the
problem. This let helpers get to the point, but many felt they
could not fully show the asker how to solve the problem.
When there was less time remaining, helpers were tempted
to take control of the asker’s mouse, noting it was easier to
show rather than explain. More time allowed helpers to give

0 1 3 10 15Minutes Taken

No Time Limit

3 Minutes

1 Minute

Answered (33)
Un-Answered (4)

4%8%
19%

38% 30%
1 Minute

50%
29% 21%

0%0%3 Minutes

71%

17% 8% 4% 0%No Time Limit

Not At All Stressed Extremely Stressed

No Time Limit

3 Minutes

1 Minute

0 50%25%25% 75% 100%

agreedisagree

strongly disagree somewhat disagree strongly agreesomewhat agree

Note: responses of “neither agree nor disagree” are omitted from the chart for clarity and readability

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 103 Page 4

context and thorough explanations. In addition, helpers could
try different approaches and walk through entire solutions
with the asker. As a result, 1 minute may be too short to
receive quality help, but 3 minutes is likely enough time for
many types of questions.

Participants agreed 1 minute was enough time for easy
questions, such as locating a button. For complicated
questions, 1 minute was not enough time and considered
stressful (Figure 3). Some participants felt 1 minute help
sessions would be less stressful with more practice. Most
participants felt 3 minutes was more than enough time, even
for trickier questions. Even if the question was not fully
answered, askers felt they had received enough information
to figure out the rest independently. Three minute sessions
were not stressful. Having no time limit was not stressful and
appropriate for complex tasks, but askers felt it was
“unnecessary” or felt guilty using the helper’s time.

Other Challenges and Opportunities
Some participants noted the value of having a pool of helpers
available to tackle problems sooner and learn new skills. One
helper suggested establishing a community-based triage
approach to route incoming requests, noting the annoyances
of answering the same question multiple times throughout
the work day. Routing questions to other helpers could
reduce this. One asker felt pairing with a helper capable of
responding was more important than the duration itself, and
pairing with the wrong helper may cause unnecessary stress.

Overall, the results presented in this study provide valuable
insights into the concept of quick, bounded help sessions,
and indicate the promise of systems that can enable rapid,
time constrained, help sessions. The results suggest 3
minutes is a good candidate for quick help sessions. It was
enough time for askers to ask a focused question while still
allowing for additional details and clarifications. Three
minutes was not stressful, and over 80% of questions, of
varying difficulty, were successfully answered. This is not
far off from the “best case scenario” of having no time limit
(92%). Even if a question was not fully answered, askers felt
they had received enough information to resolve the problem
on their own. This may pair well with people’s natural
tendency to solve problems independently [8, 38].

DESIGN GUIDELINES
The results of our formative study, along with relevant
related work, led us to develop a series of design guidelines.

Bounded Time Commitment (time)
A quick help system should be mindful of a helper’s time and
ensure all help requests end after 3 minutes. We feel a time
limit will encourage more participation from helpers and
askers by removing ambiguity around help durations [15]
and reducing feelings of guilt for taking someone’s time [5].
Our formative study showed askers felt the need to ask
targeted questions with a time limit, but some helpers
preferred this over longer questions. Thus, the success of
‘quick help’ may also rely on ‘quick questions’ that are easy

to explain, understand, and clarify. Therefore, mechanisms
could also be provided encourage question askers to
constrain the duration of their questions.

Lower Transaction Costs (low-cost)
Requesting, receiving, and providing help should be as easy
as possible to encourage more participation from the
community. The idea of ‘quick help’ should extend beyond
the help session itself, and be integrated within all
interactions with the system. The system should automate all
major steps including, but not limited to, attaching
supplementary materials, finding the best mentor, initializing
a help session, and saving archives.

Support Easy Reuse (reuse)
Some helpers noted the frustrations of answering the same
questions multiple times, an issue which has been
investigated in past work [1, 2]. While our system should
encourage short help sessions, askers may still submit
duplicates. To address this, the system should archive and
make previously answered questions available and
searchable for other users to view.

Provide Context (context)
Previous work highlights the importance of context when
submitting a help request [10], and many systems have been
designed to automatically capture contextual information [9,
13, 33]. The system should leverage and communicate as
much contextual information between the asker and helper
as possible. This may help askers formulate targeted
questions [33], and assist the helper in understanding the
problem and their ability to resolve the problem. This
contextual information should also be leveraged when users
are trying to find archived requests.

MICROMENTOR
Building on previous work, results from our formative study,
and our design guidelines, we developed MicroMentor, an
on-demand help system that enables peers to rapidly connect
with one another to solve problems and answer questions.
When describing the system, we refer to the associated
design guidelines in parentheses.

Submitting a Request
MicroMentor is designed to occupy minimal screen foot-
print, and to always be available to facilitate a help session.
There are two ways to submit a request (Figure 5).

A small button is positioned on the bottom right corner of the
user’s screen. Clicking this button starts a recording of the
user’s screen and audio, allowing one to explain problems in
plain language [10]. The recording automatically ends after
16s (time) or when the user presses the “Done” button. This
recording mode can also be accessed in MicroMentor’s
“Ask” panel. MicroMentor automatically transcribes the
captured audio using Microsoft Azure speech services to
save time in typing (low-cost). However, users may not want
to share their screen or record themselves talking, possibly
due to confidence issues or language barriers [10], so the
system also allows users to type their question if necessary.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 103 Page 5

MicroMentor automatically captures and attaches a
screenshot instead of a video. The screenshots and screen
recordings are automatically submitted with the help request
(context, low-cost), along with the user’s last 5 commands
used. Clicking the “Request Help” button sends the request
to all available helpers. The number of active users is
visualized in the “Help Request” button.

Figure 5: The view the asker sees when submitting a
request, showing the topic and supplementary content.

Mentor Matching
Synchronous, one-on-one help can be difficult to coordinate
[9, 10]. Furthermore, related work [10] and results from our
formative study suggest getting paired with the wrong helper
can cause stress. We believe helpers need to have the right
background to engage in efficient, quick help sessions.
MicroMentor uses contextual information (context) to create
an ordinal rank of potential helpers. MicroMentor uses
command history, expertise, the time since the last help
session, previous interactions with a helper, overall average
rating, additional skills, and the additional skills’ relevance
to the question topic to assign each helper a “match score.”
Some factors (e.g. time since last session, command history)
were mentioned during follow-up interviews from the
formative study, and others (e.g. average ratings, expertise)
were inspired by previous systems like Codementor [14].

Command History – Users with similar command histories
may try to perform similar tasks [35]. MicroMentor uses a
potential helper’s command frequencies to assess how often
they used the asker’s most recent commands and prioritizes
helpers with the most experience using the same commands.

Expertise – Level of expertise (novice, intermediate,
advanced) can be selected (Figure 6). MicroMentor
compares the asker’s expertise to that of the potential helper
to encourage users more or equally experienced to assist.

Time Since Last Help Session – Helpers could be
overwhelmed with multiple help requests in a short period of
time. To mitigate this, MicroMentor places more emphasis
on helpers who have not answered a help request in a while.

Previous Interactions with a Helper – Askers may enjoy
receiving help from someone they recognize. If a potential
helper previously assisted the asker, they are prioritized.

Figure 6: Settings page where users can specify their
expertise, availability, and additional skills.

Average Rating – Some helpers may be better than others.
MicroMentor uses the potential helper’s average star rating
to filter unsuccessful helpers.

Additional Skills – In the “Settings” tab (Figure 6), users can
note additional skills they have, or any focus areas for a
specific application. Like command history, users with
similar skills may be better suited to help.

Relevance of Additional Skills – Some users may note
domain-specific knowledge that cannot be captured through
command history. MicroMentor compares the request’s
topic to the helper’s additional skills to capture this
information, encouraging those with domain-specific
knowledge to help those who mention it in their requests.

MicroMentor uses these factors to generate a match score.
The system sorts all helpers by match score and uses a
triaged approach to encourage those with the top match score
to receive and respond to a help request first; MicroMentor
automatically sends a notification to a distinct user (low-cost)
every 10s using the sorted order until a request is accepted.

Receiving a Request
When the mentor matching has completed, MicroMentor
notifies potential helpers in two ways (Figure 7). Depending
on the user’s notification preferences, MicroMentor sends
push notifications to potential helpers. Helpers can click
“Accept” to launch a video conference, or “Decline” to
dismiss the notification. Clicking “Remind” will dismiss the
notification and re-display it 10s later if no one else accepted
the request. Users can also browse open requests in the
“Answer” tab. Clicking a card launches a video conference.

Both approaches display the same information: the request
topic, the asker’s name, and the target application.
MicroMentor also displays the potential helper’s match score
and shows a pink “Top Match” badge if they are the best
person to answer. All requests show supplementary materials
(screenshot or screen recording) on the left (context). If the
asker attached a video, the helper can hover over it with their
cursor to unmute the audio. Users can search for open
requests in this page, using all information (context).

Topic
entered manually or automatically transcribed
using the audio from a screen recording

Supplementary Content
screenshot or screen recording,
screenshots are captured automatically

Screen Recording
a shortcut for capturing a screen recording

Request Help
send the request to active helpers

Additional Skills
enter more information about a
skillset and domain knowledge

Expertise
overall level of expertise for
specific applications

Points
gain 1 point for answering a question

Availability
adjust notifications to reduce interruptions

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 103 Page 6

Figure 7. Receiving a help request in two ways, through a
push notification, or by browsing a list of open questions.

MicroMentor allows users to specify their notification
preferences (Figure 6). Selecting “All” will notify the user
about all incoming help requests and selecting “None” will
prevent any notifications from appearing on the user’s
screen. To reduce the number of notifications, the user can
select “Top Match Only” to only be notified when they are
the top match for a specific request.

Help Sessions
Accepting a help request automatically starts a video
conference (low-cost). MicroMentor will notify the asker
that their request has been answered, and automatically adds
the asker to the video conference after 5s, giving them some
warning the session is about to begin (time). The asker can
click “Start” to join the meeting early.

When the asker joins the session, MicroMentor
automatically shares their desktop and starts webcam video
to allow for a shared visual context (context) and non-verbal
cues, like hand gestures. Both users can see a MicroMentor
toolbar (Figure 8). MicroMentor supports basic annotation
features to enhance shared context and to mimic over-the-
shoulder cues, like pointing, that would be difficult for
remote users to perform (context). The asker can give control
to the helper, allowing the helper to directly manipulate the
software interface. The toolbar also shows the question and
remaining time. A countdown turns red when 30s are left,
and flashes with 10s left. The meeting can be ended by either
users, or automatically when 3 minutes have passed (time).
The helper earns a ‘point’ (Figure 6) for responding.

Once a help session ends, MicroMentor polls the asker and
helper to give a satisfaction score out of 5 stars. If the asker
gives a rating of 3 or less, MicroMentor will ask if they want
to resubmit their help request. Clicking “Yes” will resend the
request to all other helpers, requiring little action from the
user (low-cost). The helper receiving the low rating will not
receive a push notification for this new request.

Archives
MicroMentor automatically records all help sessions,
automatically capturing and transcribing the users’ speech

Figure 8. A live help session with active video chat, screen
sharing, annotation tools, and a countdown timer.

and commands used during the session. This information is
used to create public archives once the help session ends
(low-cost, reuse). Archives are accessible through the
“Archive” tab (Figure 9) and are similar to the open request
cards in the “Answer” panel. However, MicroMentor
includes some additional information, such as the helper’s
name, commands used during the session (context), the
session duration, and a checkbox in the bottom right corner
if the asker was satisfied (rating of 4 or 5) with the response.
Users can search for archives using all request information.

Clicking a card opens a detailed archive view (Figure 9). In
this view, users can watch a help session. Using the speech
and command data, MicroMentor creates a clickable
transcript, allowing users to navigate to relevant points in the
video by selecting commands or utterances of interest
(context, low-cost). Clicking the asker or helper’s name
opens the Mail app, allowing the user to ask follow-up
questions as needed. Users can also share a link to the video
to other users by clicking the email icon.

Implementation
MicroMentor was developed using the Electron framework.
Every computer running MicroMentor is a client of a custom
WebSocket server. The server manages and broadcasts
incoming help requests to all active MicroMentor users. A
shared Dropbox folder is used to synchronize videos and
images across every user. MicroMentor uses the Zoom
Electron SDK for all video conferences.

Extracting Command Histories
The system tracks all commands issued by the user for most
software applications using a Python module [27] that uses
the native OSX accessibility API. MicroMentor tracks when
users click on different GUI elements. These GUI elements
often have names that correspond to the commands they
trigger; clicking the “Pivot Table” button in Excel, for
example, would expose a button with the name “Pivot Table”
to the accessibility API. MicroMentor takes advantage of
these names to create human-readable command histories.
Fusion 360 does not route user commands to the built-in
accessibility framework, so MicroMentor uses a custom
Python script to log all Fusion 360 commands to a text file.
Note that MicroMentor does not require command histories
to work, but the presence of command history adds a richer
form of context to each help request.

Push Notification
appears in the top right corner
of the screen

Search
find open requests using the
application and topic

Match Score
found using asker and potential
helper’s information

Supplementary Content
view the asker’s supplementary content,
hovering over a video unmutes the audio

Video
asker and helper’s
webcam video

Screen Sharing
share the asker’s screen

In-Meeting Toolbar
show the topic, meeting
tools, and timer
Tools
from left to right: annotate,
erase, give control, chat, end
Timer
turns red with 30s left, flash
with 10s left, end the call at 0s

How do I make a tail piece?

0:45

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 103 Page 7

Figure 9. Archive view, where users can search through
past help sessions, read the transcript, connect with the
helper and share the video with others.

EVALUATION
Askers in the formative study could not access help resources
online to encourage more help sessions between askers and
helpers. However, that does not represent a realistic scenario;
in practice, MicroMentor users would also have access to
various online resources, like videos and blog posts. As such,
we compare MicroMentor to a realistic baseline condition:
using traditional, web-based help. Other baseline conditions
were considered, such as in-person help, but we felt online
resources made for a better comparisons since MicroMentor
and online resources would be always-available (but in-
person help may be difficult to find).

The goal of the evaluation is to elicit qualitative feedback
from participants to further validate the concept of quick, on-
demand video-based help. Quantitative comparisons are
made where applicable, but the baseline is mainly included
to provide participants a point of reference when discussing
MicroMentor.

Fusion 360 was the target application as it is representative
of modern, feature-rich software. Mentor matching was
disabled, so helpers would have equal opportunity to answer
different types of questions. Evaluating mentor matching is
left for future work when the full data may be available for a
large population of helpers and askers.

Participants and Apparatus
We recruited 12 participants. Four helpers were Fusion 360
experts, ages 22 to 30 (M = 28, SD = 4). All helpers were
male and reported using Fusion 360 sometimes or often in

their work. Three of the helpers had also took part in our
formative study. Eight askers, ages 21 to 57 (M = 37, SD =
12.4) self-identified as Fusion 360 novices. Five were male,
3 were female. Remuneration was a $50 gift card, plus travel
expenses where applicable. Everyone worked at a desk with
a laptop with a mouse. Askers sat in individual rooms while
all helpers sat in a common waiting area.

Procedure
The study was conducted as two consecutive within-subjects
group sessions consisting of 4 helpers, 4 askers, and 2
conditions. Both conditions required askers to work on open-
ended design tasks (design a boat or plane). Askers were
provided a series of boat and plane images as inspirations.
The design task was counterbalanced within each session and
the condition order was also counterbalanced across both
group sessions. The two conditions were:

1) Independent help – askers worked independently on
their design task. When they needed help or had a
question, they could access any online resource.

2) MicroMentor – askers worked on the next design task
and could only seek help using MicroMentor. Helpers
worked on any design task they were comfortable with.
As they received notifications for incoming MicroMentor
requests, helpers could accept them to start a help session.

Each condition lasted 45 minutes. Askers were instructed to
try to ask no fewer than 5 questions, and up to 9 questions (1
question every 5 minutes) to ensure every participant could
try using MicroMentor multiple times. After completing both
group sessions, participants completed a survey.

Results
Participants took part in 40 help sessions using
MicroMentor. During the baseline condition (online
resources), askers made 65 help-seeking attempts. This
number is greater than that of MicroMentor, but askers often
accessed the same resources multiple times. For example,
watching a few seconds of a video tutorial, applying this
knowledge in Fusion, before returning to the same video. It
is unclear whether these help-seeking attempts were useful.
Data from 12 sessions was discarded due to technical errors.
As such, the results from 28 help sessions are presented.

Help Session Duration
It took between 7s and 91s (28s on average) for a request to
be accepted by a helper. The asker joined the video
conference roughly 5s later. The shortest help session was
33s and the average session lasted 131s. Overall, the duration
of the average request was 164s (Figure 10). Half of the

Figure 10: Timeline of an average help session, from the
time posting the question to when the call ends.

Search
find archives by topic, application,
commands, or speech

View Request Information
view supplementary content,
session duration, commands,
and the asker’s satisfaction

Share Videos
send a link
through email

Video Archive
recorded automatically

Connect
contact others
through email

Transcript
features speech and commands,
clicking jumps to that point
in the video

Asker posts
question

Helper accepts
request

Call starts Call ends

28s 5s 131s

164s (total)

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 103 Page 8

requests had video submissions (9s on average). Considering
these requests, it took 175s on average from the time askers
began recording their question to receiving a response.

Satisfaction with Answer
After every help session, the asker and helper gave
satisfaction scores out of 5 stars. Due to a technical issue, one
session’s ratings were lost, so we look at the results from 27
help sessions (Figure 11). Overall, askers were satisfied with
the help they received using MicroMentor. Twenty-three out
of 27 requests (85%) received a 4 or 5 star rating. Likewise,
the helpers were satisfied with the help they delivered and
gave 5 star ratings for 21 (78%) requests. This was confirmed
in the participants’ responses in the follow-up survey.

Figure 11. Asker and helper's ratings (out of 5 stars)

Survey Results
Askers and helpers answered the following questions using
a 7-point Likert scale.

Ease of use – Askers and helpers noted how easy
MicroMentor was to use for seeking or giving help; 1 being
very difficult and 7 being very easy. Everyone gave ratings
of 5 or more and 9 participants (75%) gave a rating of 6 or 7.

Frequency of use – Many participants felt they would use
MicroMentor frequently. Seven stated they would use it a
few times a week, 1 helper stated several times a day, and 1
asker stated several times an hour.

Subjective Feedback
Every asker felt they learned something using MicroMentor
and many participants were satisfied with the help requests
(Figure 11). Participants felt 3 minutes was enough time for
most problems, like task-based questions, and many noted
the value of keeping sessions focused.

“[MicroMentor] forces you to get to the crux of a problem
ASAP” – Helper 1

Some participants felt that speaking with a helper was more
engaging and helped them remember more information:

“I liked MicroMentor much better, because I could get the answer
right away. It saved me time and also helped me to remember
the process better.” – Asker 2

Most askers felt it was easier and faster to receive help with
MicroMentor compared to online resources, noting the time
needed to review irrelevant or superfluous details:

“[MicroMentor] was much more helpful. I found myself not having
that enough patien[ce] to look through the web for the answers to
my specific question, so I would end up figuring things out by
trial-and-error. Either way it's much less efficient.” – Asker 5

Contrasting with online resources, participants preferred
MicroMentor:

“I learned much more in the 1 hour session with MicroMentor
than the other hour where I just followed along a YouTube
tutorial. This is especially true in the tutorial I was following
where the Fusion command locations are different!” – Asker 8

“Seeking help independently usually results in general
tutorials that may not cover the specifics of what you want to
do and there is a lot of sifting through irrelevant information.
Also finding the solution to your exact case is a matter of luck
because it depends on someone else already having that issue
and posting about it online. With the MicroMentor system, you
can find an answer to the specific problem you're having and
get related tips or best practices to gain even more
knowledge.” – Asker 6

“I think that it was a much more rapid way to receive
information from experts compared to lengthy forum
discussion” – Helper 2

Participants felt MicroMentor would be beneficial for any
software user, regardless of expertise. They also felt quick
help systems could be used to solve a wide variety of
problems. Novices and experts could learn about best
practices, specialized software, different strategies for
solving a problem, and ask for online resource
recommendations. When online documentation is limited,
quickly connecting with another user could fill in the gaps.

DISCUSSION AND FUTURE WORK
Overall, askers and helpers were satisfied with the help they
received (Figure 11). Compared to the formative study,
askers were satisfied with the answer for roughly the same
percentage of requests (85% vs. 83%), suggesting remote
quick help could be as effective as in-person quick help. As
with the formative study, participants overall felt 3 minutes
was enough time to give or receive the help needed to solve
a problem. Participants also thought using a quick help
system like MicroMentor was a valuable way to seek help
and preferred it over traditional help seeking strategies.
These promising results suggest quick help systems like
MicroMentor could become popular help seeking tools.

MicroMentor sets a foundation for future work on quick help
and we believe there are many exciting opportunities in this
space. First, more work is needed to better understand the
impacts of quick help during long term, in-the-wild use. With
more practice, users may adopt new strategies for asking and
answering questions. The volume of, and type of questions
being asked may also change as users gain more skills.

With long term use, the same askers and helpers may interact
with one another multiple times. Future quick help systems
should consider detecting these moments and providing
additional communication channels to foster a deeper
mentor-mentee relationship. For example, a user could
volunteer to act as someone’s “buddy,” and become the first
point of contact when there is a new request.

Asker

Helper
1 2 3 4 5

67%

18%11%0%4%
78%

7%4% 11% 0%

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 103 Page 9

There are different approaches for matching mentors to
mentees and many factors of varying importance that could
be leveraged. For our proof-of-concept, we selected factors
inspired by previous work and results from the formative
study. However, future versions could allow users to select
factors they value the most and assign their own weights.
Alternatively, more context, like archive search history and
transcripts, could be leveraged to improve these algorithms.
Future work should validate alternative approaches.

There are many triaging styles for routing questions to
helpers, especially when a question is asked multiple times.
Archives could include more information, like an “archive
score” that specifies how relevant an archive is to what you
are doing. This would encourage more use and help uncover
useful archives in a context-aware manner [34].

MicroMentor uses push notifications to notify helpers of an
incoming request, but this approach may be too intrusive.
The system allows users to specify their availability to
reduce the number push notifications they receive, and while
this is a good first step towards reducing the number of
notifications, automatically detecting breaks or moments of
inactivity may be a better strategy.

There are some privacy concerns. Users may not want to
show their face or screen with random community members,
especially if this information is archived for others to access
and share. Future quick help systems should consider
implementing different privacy settings, with the option for
an “anonymous” mode where all personal information is
removed from the request and the session is not archived.

While we recruited Fusion 360 experts and novices to
become helpers and askers, respectively, anyone could ask
questions and provide help using MicroMentor. The help
session dynamics between different types of users would be
interesting to explore and future quick help systems may
need to adjust in-meeting tools to provide more support for
less experienced users who are acting as helpers.

Related, MicroMentor was informally tested using other
applications like Excel, but the main design was formed with
GUI creativity and 3D design tools in mind. As such, the time
limit and command extractions may not generalize to other
domains. For example, MicroMentor relies on clicked GUI
elements to extract command histories, which may not be
relevant to the main functionalities of a particular
application, like a programming or math tool. We recognize
other limitations of this approach (false command
classifications, no keyboard shortcuts, applications must be
accessible), but it was useful for our proof-of-concept.
MicroMentor may still be helpful for users trying to find GUI
settings and menus in other types of applications, such as
finding the option to download a development package in a
programming tool or export a graph in a statistics tool.
However, future work should validate the time limit for other
types of applications and explore richer interactions with
software that could shared with other quick help systems.

One outstanding challenge is extending the system to a larger
user base and promoting greater participation. MicroMentor
gives users a ‘point’ when they answer a request, but
advanced gamifications or additional incentives, such as
cloud credits for the target application, could work well.
Complex questions may need additional time to receive a
more complete solution. When submitting a request, askers
could spend points for a “premium help request” (Figure 12),
securing an expert helper and more time (5 minutes).
Alternatively, askers and helpers could agree to extend a help
session in the moment, up until a new time limit (5 minutes)
by spending points. There are many possibilities, and future
work should evaluate the best models for quick help sessions.

Figure 12: Alternative design for ‘premium’ help sessions
that could incentivize greater participation from experts.

Another interesting avenue for future work, is how the data
gathered from MicroMentor could be used to inform future
interface design. For example, if there are many questions
about particular command, MicroMentor could
automatically send this data to the respective companies and
suggest improvements for future software updates.
CONCLUSION
We explore the idea of quick, one-on-one help sessions.
Results from a formative study suggest 3 minutes is often
enough time for a novice to receive help from an expert, with
requests marked as having been answered 83% of the time.
We use these findings to drive the development of our proof-
of-concept system, MicroMentor. MicroMentor promotes a
rich shared context and lowers the transaction costs of
requesting help from other members in the community by
automatically capturing and attaching supplementary
materials, finding suitable helpers, initializing a video
conference, and archiving requests for later use. Results from
a 12 participant lab study found users were satisfied with the
answer they received through MicroMentor 85% of the time.
Our work serves as a foundation for future quick 1-1 help
systems, and we hope more research will focus on turning
impactful, micro moments into big learning opportunities.
ACKNOWLEDGEMENTS
We thank Rebecca Krosnick and Kimia Kiani for their help
facilitating our user studies.

Premium Request
spend points for more time
and guarantee an expert

Points
gain 1 point for answering
a question

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 103 Page 10

REFERENCES
[1] Mark S. Ackerman and Thomas W. Malone. 1990.

Answer Garden: a tool for growing organizational
memory. Proceedings of the conference on Office
information systems -, ACM Press, 31–39.
http://doi.org/10.1145/91474.91485

[2] Mark S. Ackerman and David W. McDonald. 1996.
Answer Garden 2: merging organizational memory
with collaborative help. Proceedings of the 1996 ACM
conference on Computer supported cooperative work -
CSCW ’96, ACM Press, 97–105.
http://doi.org/10.1145/240080.240203

[3] Andrea L. Ames. 2001. Just what they need, just when
they need it: an introduction to embedded assistance.
Proceedings of the 19th annual international
conference on Computer documentation - SIGDOC
’01, ACM Press, 111.
http://doi.org/10.1145/501516.501539

[4] Muhammad Asaduzzaman, Ahmed Shah Mashiyat,
Chanchal K. Roy, and Kevin A. Schneider. 2013.
Answering questions about unanswered questions of
Stack Overflow. 2013 10th Working Conference on
Mining Software Repositories (MSR), IEEE, 97–100.
http://doi.org/10.1109/MSR.2013.6624015

[5] Lucy M. Berlin and Robin Jeffries. 1992. Consultants
and apprentices: observations about learning and
collaborative problem solving. Proceedings of the 1992
ACM conference on Computer-supported cooperative
work - CSCW ’92, ACM Press, 130–137.
http://doi.org/10.1145/143457.143471

[6] Colin Camerer and Martin Weber. 1992. Recent
developments in modeling preferences: Uncertainty
and ambiguity. Journal of Risk and Uncertainty 5, 4:
325–370. http://doi.org/10.1007/BF00122575

[7] John M. Carroll. 1990. The Nurnberg funnel: designing
minimalist instruction for practical computer skill.
MIT Press, Cambridge, MA, USA.

[8] John M. Carroll and Mary Beth Rosson. 1987. Paradox
of the Active User. In Interfacing Thought: Cognitive
Aspects of Human-Computer Interaction. MIT Press,
Cambridge, MA, USA, 80–111.

[9] Yan Chen, Sang Won Lee, Yin Xie, YiWei Yang,
Walter S. Lasecki, and Steve Oney. 2017. Codeon: On-
Demand Software Development Assistance.
Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems - CHI ’17, ACM Press,
6220–6231. http://doi.org/10.1145/3025453.3025972

[10] Yan Chen, Steve Oney, and Walter S. Lasecki. 2016.
Towards Providing On-Demand Expert Support for
Software Developers. Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems -
CHI ’16, ACM Press, 3192–3203.
http://doi.org/10.1145/2858036.2858512

[11] Parmit K. Chilana, Tovi Grossman, and George
Fitzmaurice. 2011. Modern software product support
processes and the usage of multimedia formats.
Proceedings of the 2011 annual conference on Human
factors in computing systems - CHI ’11, ACM Press,
3093. http://doi.org/10.1145/1978942.1979400

[12] Parmit K. Chilana, Nathaniel Hudson, Srinjita Bhaduri,
Prashant Shashikumar, and Shaun Kane. 2018.
Supporting Remote Real-Time Expert Help:
Opportunities and Challenges for Novice 3D Modelers.
2018 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), IEEE, 157–166.
http://doi.org/10.1109/VLHCC.2018.8506568

[13] Parmit K. Chilana, Andrew J. Ko, and Jacob O.
Wobbrock. 2012. LemonAid: selection-based
crowdsourced contextual help for web applications.
Proceedings of the 2012 ACM annual conference on
Human Factors in Computing Systems - CHI ’12,
ACM Press, 1549.
http://doi.org/10.1145/2207676.2208620

[14] Codementor. Codementor | Get live 1:1 coding help,
hire a developer, & more. Retrieved September 8, 2019
from https://www.codementor.io

[15] Daniel Ellsberg. 1961. Risk, Ambiguity, and the
Savage Axioms. The Quarterly Journal of Economics
75, 4: 27. http://doi.org/10.2307/1884324

[16] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T.
Dumais. 1987. The vocabulary problem in human-
system communication. Communications of the ACM
30, 11: 964–971. http://doi.org/10.1145/32206.32212

[17] Susan R. Fussell, Robert E. Kraut, and Jane Siegel.
2000. Coordination of communication: effects of
shared visual context on collaborative work.
Proceedings of the 2000 ACM conference on Computer
supported cooperative work - CSCW ’00, ACM Press,
21–30. http://doi.org/10.1145/358916.358947

[18] Max Goldman, Greg Little, and Robert C. Miller. 2011.
Real-time collaborative coding in a web IDE.
Proceedings of the 24th annual ACM symposium on
User interface software and technology - UIST ’11,
ACM Press, 155.
http://doi.org/10.1145/2047196.2047215

[19] Tovi Grossman and George Fitzmaurice. 2010.
ToolClips: an investigation of contextual video
assistance for functionality understanding. Proceedings
of the 28th international conference on Human factors
in computing systems - CHI ’10, ACM Press, 1515.
http://doi.org/10.1145/1753326.1753552

[20] Tovi Grossman, George Fitzmaurice, and Ramtin
Attar. 2009. A survey of software learnability: metrics,
methodologies and guidelines. Proceedings of the 27th
international conference on Human factors in
computing systems - CHI 09, ACM Press, 649.
http://doi.org/10.1145/1518701.1518803

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 103 Page 11

[21] Philip J. Guo, Jeffery White, and Renan Zanelatto.
2015. Codechella: Multi-user program visualizations
for real-time tutoring and collaborative learning. 2015
IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), IEEE, 79–87.
http://doi.org/10.1109/VLHCC.2015.7357201

[22] Susan M. Harrison. 1995. A comparison of still,
animated, or nonillustrated on-line help with written or
spoken instructions in a graphical user interface.
Proceedings of the SIGCHI conference on Human
factors in computing systems - CHI ’95, ACM Press,
82–89. http://doi.org/10.1145/223904.223915

[23] Arienne Holland. 2014. How Estimated Reading Times
Increase Engagement With Content. Marketing Land.
Retrieved September 13, 2019 from
https://marketingland.com/estimated-reading-times-
increase-engagement-79830

[24] Damon Horowitz and Sepandar D. Kamvar. 2010. The
anatomy of a large-scale social search engine.
Proceedings of the 19th international conference on
World wide web - WWW ’10, ACM Press, 431.
http://doi.org/10.1145/1772690.1772735

[25] Nathaniel Hudson, Celena Alcock, and Parmit K.
Chilana. 2016. Understanding Newcomers to 3D
Printing: Motivations, Workflows, and Barriers of
Casual Makers. Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems -
CHI ’16, ACM Press, 384–396.
http://doi.org/10.1145/2858036.2858266

[26] Nathaniel Hudson, Parmit K. Chilana, Xiaoyu Guo,
Jason Day, and Edmund Liu. 2015. Understanding
triggers for clarification requests in community-based
software help forums. 2015 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC),
IEEE, 189–193.
http://doi.org/10.1109/VLHCC.2015.7357216

[27] Aaron Jacobs. accessibility: Extension module that
wraps the Accessibility API for Mac OS X. Retrieved
December 20, 2019 from
https://github.com/atheriel/accessibility

[28] Akshay Java, Xiaodan Song, Tim Finin, and Belle
Tseng. 2007. Why we twitter: understanding
microblogging usage and communities. Proceedings of
the 9th WebKDD and 1st SNA-KDD 2007 workshop on
Web mining and social network analysis -
WebKDD/SNA-KDD ’07, ACM Press, 56–65.
http://doi.org/10.1145/1348549.1348556

[29] Kimia Kiani, George Cui, Andrea Bunt, Joanna
McGrenere, and Parmit K. Chilana. 2019. Beyond
“One-Size-Fits-All”: Understanding the Diversity in
How Software Newcomers Discover and Make Use of
Help Resources. Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems

- CHI ’19, ACM Press, 1–14.
http://doi.org/10.1145/3290605.3300570

[30] Kevin Knabe. 1995. Apple guide: a case study in user-
aided design of online help. Conference companion on
Human factors in computing systems - CHI ’95, ACM
Press, 286–287. http://doi.org/10.1145/223355.223677

[31] Maria Konnikova. 2013. A List of Reasons Why Our
Brains Love Lists. Retrieved September 13, 2019 from
https://www.newyorker.com/tech/elements/a-list-of-
reasons-why-our-brains-love-lists

[32] Wendy E. Mackay. 1990. Patterns of sharing
customizable software. Proceedings of the 1990 ACM
conference on Computer-supported cooperative work -
CSCW ’90, ACM Press, 209–221.
http://doi.org/10.1145/99332.99356

[33] Justin Matejka, Tovi Grossman, and George
Fitzmaurice. 2011. IP-QAT: in-product questions,
answers, & tips. Proceedings of the 24th annual ACM
symposium on User interface software and technology
- UIST ’11, ACM Press, 175.
http://doi.org/10.1145/2047196.2047218

[34] Justin Matejka, Tovi Grossman, and George
Fitzmaurice. 2011. Ambient help. Proceedings of the
2011 annual conference on Human factors in
computing systems - CHI ’11, ACM Press, 2751.
http://doi.org/10.1145/1978942.1979349

[35] Justin Matejka, Wei Li, Tovi Grossman, and George
Fitzmaurice. 2009. CommunityCommands: command
recommendations for software applications.
Proceedings of the 22nd annual ACM symposium on
User interface software and technology - UIST ’09,
ACM Press, 193.
http://doi.org/10.1145/1622176.1622214

[36] David W. McDonald and Mark S. Ackerman. 2000.
Expertise recommender: a flexible recommendation
system and architecture. Proceedings of the 2000 ACM
conference on Computer supported cooperative work -
CSCW ’00, ACM Press, 231–240.
http://doi.org/10.1145/358916.358994

[37] Medium. 2014. Read Time and You. Medium.
Retrieved September 13, 2019 from
https://blog.medium.com/read-time-and-you-
bc2048ab620c

[38] David G. Novick, Edith Elizalde, and Nathaniel Bean.
2007. Toward a more accurate view of when and how
people seek help with computer applications.
Proceedings of the 25th annual ACM international
conference on Design of communication - SIGDOC
’07, ACM Press, 95.
http://doi.org/10.1145/1297144.1297165

[39] Susan Palmiter and Jay Elkerton. 1991. An evaluation
of animated demonstrations of learning computer-
based tasks. Proceedings of the SIGCHI conference on

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 103 Page 12

Human factors in computing systems Reaching through
technology - CHI ’91, ACM Press, 257–263.
http://doi.org/10.1145/108844.108906

[40] Fatemeh Riahi, Zainab Zolaktaf, Mahdi Shafiei, and
Evangelos Milios. 2012. Finding expert users in
community question answering. Proceedings of the
21st international conference companion on World
Wide Web - WWW ’12 Companion, ACM Press, 791.
http://doi.org/10.1145/2187980.2188202

[41] Michael B. Twidale. 2005. Over the Shoulder
Learning: Supporting Brief Informal Learning.
Computer Supported Cooperative Work (CSCW) 14, 6:
505–547. http://doi.org/10.1007/s10606-005-9007-7

[42] Christina Willner. 2017. 5 Benefits of using Time
Estimates in your To-do List. Amazing Marvin.
Retrieved September 13, 2019 from
https://blog.amazingmarvin.com/5-benefits-of-using-
time-estimates-in-your-to-do-list/

[43] How do I ask a good question? - Help Center. Stack
Overflow. Retrieved September 8, 2019 from
https://stackoverflow.com/help/how-to-ask

[44] Rogue 🌻. Bigham on Twitter: “@deliprao haha, tweets
are way better. first, you did the tiniest amount (at
least) of background on me. second, they’re short!
easier to read, and incentivizes getting to the point.
third, my response is expected to be short, so need to
ask something that gets to the heart of it!” / Twitter.
Twitter. Retrieved September 19, 2019 from
https://twitter.com/jeffbigham/status/11653836606668
59520

[45] Powers of 10: Time Scales in User Experience. Nielsen
Norman Group. Retrieved September 19, 2019 from
https://www.nngroup.com/articles/powers-of-10-time-
scales-in-ux/

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 103 Page 13

